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FOREWORD

This report is an adaptation of the master's thesis of

Robert D. Essert, Jr., "Axisymmetric Propagation of a Spherical N Wave

in a Cyclindrical Tube". Mr. Essert was enrolled in the Department

of Mechanical Engineering and received his degree in December 1980.

This research was carried out at Applied Research Laboratories

and was supported by the Office of Naval Research under Contract

N00014-75-C-0867. Scientific Officer for ONR was Dr. Logan E. Hargrove.
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CHAPTER I

INTRODUCTION

This thesis documents an experimental and theoretical

investigation of the sound field produced by a transient point source in

a cylindrical tube. The field is made up of the direct pulse and a se-

quence of pulses representing reflections from the tube wall. Linear

theory is used to explain the amplitude and phase of waveforms measured

on the tube axis. The solution, given as a series expansion in terms of

rays, provides an adequate explanation of the measured waveforms for low

source amplitudes. Measurements indicate the growth of nonlinear effects

as the source amplitude is increased.

A. Description of the Problem; Motivation by Experiment

Because the genesis of our study was experimental in nature,

we begin this work with a brief description of the measurement

system and some preliminary data. The measurements are discussed in

greater detail in Chapter II. The basic apparatus is sketched in Fig. 1.1.

A high voltage spark source was used to produce a short pressure transient

on the axis of an air-filled aluminum tube. The pressure pulse emitted

by the spark was an N wave, so called because of its resemblance to the

capital letter N. The typical duration of the N wave was 10 iisec, and

the electrode gap was small enough that the spark could be considered a

point source. Two different lengths of tube were used, as is indicated

by the two microphone positions in the sketch. The inside diameter of

the tube was 5.1 cm, and the lengths of the short and long tubes were

about 1.5 and 15 diameters, respectively. The receiver was a wideband
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3

condenser microphone, centered on the axis of the tube. The active por-

tion of the microphone had a diameter less than 4% of the tube diameter,

and so approximated a point receiver. The microphone preamplifier, not

shown, but located outside the tube, was connected directly to a digital

oscilloscope. The oscilloscope was triggered after an appropriate delay

by the electromagnetic radiation from the spark.

Oscillograms of the on-axis pressure at the two different

microphone positions are shown in Fig. 1.2. Each series of pulses begins

with the reception of the direct N wave which has traveled straight down

the tube axis. A series of reflected signals follows. The first of these

represents a wave reflected from the tube wall midway between source and

receiver, the second represents a twice reflected wave, and so on. In the

long tube, the first several reflected signals overlap because path length

differences are smaller than the pulse length. In the short tube, however,

all pulses are resolved in time.

Some important features of the behavior of the pressure wave-

form are evident in Fig. 1.2. First, most of the reflected signals are

larger in amplitude than the direct wave. Second, the overall envelope

of the pulse peaks increases to a maximum and then slowly decays. The

rise and fall are more rapid in the short tube. Third, the envelope ex-

hibits oscillatory behavior. The "period" of oscillation is four pulses.

In order that the individual pulse shapes may be more closely

examined, the first half of the oscillogram in Fig. 1.2(b) is repeated

in Fig. 1.3 on an expanded time scale. A fourth observation may now be

made: Although the direct arrival is an N wave, later arrivals are not

N waves; the delayed pulses are different from the direct wave in shape

4 bw W7:
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6

as well as amplitude. It is seen that the oscillatory behavior of the

amplitude envelope is associated with a periodic variation in wave 1hape:

the fifth reflected wave (n=5) resembles the first (n=l), the sixth

resembles the second, and so on. The sequence of four wave shapes is

repeated indefinitely.

We submit that the sequential change in wave shape is due to

cumulative 900 phase shifts. The tube wall is a curved reflector; ndeed,

it is a cylindrical mirror. Focusing produced by a cylindrical mirror is

two dimensional, and whenever a wave passes through a two-dimensional focus,

it suffers a phase lag of 90o .1 In the tube reflected portions of the con-

fined wavefront cross the axis at least once (see Fig. 1.4). Because the

axis is a line on which the convergent waves focus, the phase of each

reflected front changes abruptly there. The phase of the divergent post-

focus front lags that of the corresponding pre-focus front by ir/2. As

each part of the wavefront alternately converges and diverges, its relative

phase lag increases in increments of ff/2. Hence, every fourth reflected wave

possesses a cumulative phase shift of 2w, and the wave shape repeats.

A primary objective of this investigation is to analyze the

salient features of the waveforms measured on the axis of the tube. A

valid mathematical description should account explicitly for the amplitude

variation and cumulative phase shift exhibited by the measured waveform3.

In Chapter III it is shown that a solution of the linear wave equation for

a lossy medium provides an adequate explanation of the measurements for low

source amplitudes. At high source amplitudes, measured waveforms differ

A transient signal is said to undergo a 9o phase shift when the phase
of each frequency component in the signal is shifted 90* .

,I 7"_
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8

substantially from those predicted by linear theory. The discrepancies

are attributed to nonlinear propagation distortion.

B. Background

Sound propagation in acoustic waveguides may be discussed in

terms of either normal modes or rays. Of major concern in deciding which

approach is more appropriate in a given situation is the ratio of the

acoustic wavelength A to a characteristic dimension of the waveguide.

A commonly used parameter is ka, where k=2rrIX and a is the characteristic

dimension. Mode solutions are, in principle, valid for all possible

values of ka, but they must often be evaluated numerically and can

become unwieldy when the source frequency is high enough to excite a

great many modes. Ray solutions are valid only for ka>>l, but they have

an important advantage over mode solutions: they have more appeal for

physical understanding. Hamet 2, analyzed the problem of a point source

in a cylindrical tube in terms of both modes and rays. His results are

of limited practical applicability.

In the present problem, the signal is a transient whose duration

is short compared to travel time across the tube. The sample measurements

in Figs. 1.1 and 1.2 show that the sound field on the axis is a super-

position of direct and reflected waves. Consequently, a solution given in

terms of rays may be more readily applicable than a mode solution. In

fact, a ray path solution can be derived from the mode solution in the

.3 limit of short wavelength. The direct path between source and receiver

corresponds to the fundamental (plane wave) mode, the reflected paths to

higher order (transverse) modes. The results contained in this thesis

will be interpreted, for the most part, in terms of ray theory.



It is shown in Chapters III and IV that focusing on the tube

axis and energy dissipation by the medium are primarily responsible for

the modification of the N shape as the wave propagates down the tube.

These two mechanisms have been investigated independent of one another by

other researchers, but little work has been published that accounts for

focusing and absorption together. In his modal analysis (Ref. 2) Hamet

accounted for thermal and viscous boundary layer losses, but he did not

deal with the problem of focusing. In his ray path analysig (Ref. 3) he

recognized that the reflected wavefronts must focus, but he neglected

losses altogether.

We now draw attention to research efforts of others that have

contributed to our understanding of the present problem. First, studies

of absorption and dispersion of sound waves by the medium are discussed.

Next, we review time domain methods used in dealing with pulses and note

how those methods have been applied to problems involving the focusing of

acoustic transients and the propagation of finite amplitude sound in tubes.

Finally, relevant work in some areas of applied acoustics is mentioned.

1. Absorption and dispersion in an air-filled tube. It is now

known that the three most important causes of sound attenuation and dis-

persion in an homogeneous atmosphere are viscosity, thermal diffusion, and

molecular relaxation. While molecular relaxation is a comparatively new

field of study, sound propagation in a viscous, heat conducting (thermo-

viscous) medium has been investigated for over a century. In 1868

Kirchhoff 4 reported an analysis of quasi-plane waves in a cylindrical tube

containing a thermoviscous gas. He found an exact dispersion relation

satisfied by the complex wave number k, but his result is in the form of

Sk~
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a complicated transcendental equation that cannot in general be solved

explicitly. By assuming that the boundary layer effects (viscous drag and

heat conduction at the tube wall) were of much greater importance than main-

stream effects (friction and heat conduction that occur in the main body

of the fluid, away from the tube wall), Kirchhoff was able to determine

an approximate form for k that may be easily incorporated in a frequency

domain solution for plane progressive waves in a tube. tThe effect of

thermoviscous boundary layer absorption on higher order modes in wave-

guides was the subject of much discussion in the early 1950's. 6-1Using

different methods, Beatty 10and Lambert 11arrived at equivalent expres-

sions for the boundary layer attenuation of higher modes. Neither con-

sidered the dispersive effects of the boundary layer, nir of the main-

stream absorption. In our problem mainstream absorption is larger

* than boundary layer absorption; so either boundary layer effects must

be neglected altogether, or a more rigorous solution of the full

Kirchhoff dispersion relation, restated for higher order modes, must be

attempted.

More recently, several researchers have utilized numerical

techniques to calculate absorption and dispersion from the Kirchhoff

solution. Shields, Lee, and Wiley 12were the first to compute a numerical

solution for the plane wave mode from the exact Kirchhoff equation.

Their results were later verified experimentally by Shields, Bass, and

413 14*Bolen over a wide range of frequencies. Tijdeman developed a numerical

12model similar to that of Shields, Lee, and Wiley after rewriting the

Kirchhoff equation in terms of the compressional wave number, the shear

a 4 5
'Kirchhoff's analysis was repeated by Rayleigh in his treatise of 1877.

.7;



wave number, and a reduced frequency parameter. The Tijdeman paper also

contains a review of other important analytical and numerical solutions of

the Kirchhoff equation.

15Scarton and Rouleau calculated attenuation and dispersion

curves and mode shapes for the first thirty-two axisymmetric modes in a

tube filled with a viscous liquid. Their solution contains both main-

stream and boundary layer viscosity effects, but it does not include the

influence of heat conduction. Uncoupled scalar and vector viscous wave

equations are solved for each particular value of the product of frequency

and viscosity (which is proportional to the boundary layer thickness).

Such calculations are beyond the scope of this investigation.

Since it was not possible to obtain a manageable solution of the

thermoviscous wave equation valid for our problem, boundary layer effects

were neglected altogether. Implications of this decision and further

justification for it are discussed in Chapters III and IV.

Viscosity, heat conduction, and molecular relaxation all make

important contributions to mainstream absorption, but the relative impor-

tance of each varies with frequency. Within the frequency interval of

interest in the present study, 10 kHz - 1 MHz, each of the three absorp-

tion mechanisms is important. Atmospheric absorption of a small-signal

N wave is discussed in Appendix B of this work. For further information

on the study of atmospheric absorption the reader is referred to Appen-

dix B and Refs. B.l-B.4.

2. Time domain analysis of the diffraction and focusing of pulses.

The Helmholtz-Kirchhoff (or simply Kirchhoff) integral theorem has been

employed by many researchers in their analyses of the refraction,

.4.

1I
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diffraction, and reflection of small-signal acoustic pulses. The theorem

gives the value of the field at a point Q in terms of an integral of certain

properties involving the pressure and pressure gradient on a surrounding

surface S. tAnderson, Northwood, and Barnes 16used the Kirchhoff integral

to obtain a solution for a pulse reflected from the inside surface of a

sphere. Agreement between their measurements and theory was compromised by

the fact that their transducers were not omnidirectional. A time domain

analysis of broadband refraction and diffraction was published by

H. A. Wright. 17The accompanying experimental results were obtained using

an (approximately) omnidirectional spark source. The Kirchhoff integral

18 19
has been applied by Lockwood and by Cobb to diffraction of N waves in

lossless media. W. M. Wright 20has studied the scattering of N waves by

plates and cylinders and interference of reflected and diffracted signals

at the face of a microphone.

Most of the pulse-to-pulse variation in wave shape observed in

the present study is due to focusing. Since the advent of supersonic air-

craft there have been numerous studies related to sonic boom focusing. The

theoretical work of Whitham 212 provided a strong foundation for later

experimenters in acoustics and fluid mechanics. Whitham described how the

process of self-refraction can prevent focusing: As a concave wavefront

approaches a focus, the points near the center of the front travel faster

than those near the edge. If finite amplitude effects are large compared

to absorption effects, the ceuter of the front overtakes the edge, and the

j once concave front turns convex without ever passing through a focus. The

- refraction and diffraction of finite-amplitude N waves by gas bubbles were

+ 30
Anderson derived the Kirchhoff integral for a lossy medium.

7 ;*-.
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observed by Davy and Blackstock.2 3 Beasley, Brooks, and Barger 24 investi-

gated two- and three-dimensional focusing of finite amplitude, spark pro-

duced N waves. Cornet 25 used an improved microphone to perform experiments

for the three-dimensional case. In his theoretical analysis, Cornet began

with the Kirchhoff integral and later included nonlinear distortion. The

signal at the focus was, in the linear approximation, predicted to be the

derivative of the original signal. It will be shown in a later section of

the present work that a "half-derivative" of the original signal is pre-

dicted at a two-dimensional focus.

The focusing of intense transients other than spark produced

N waves is relevant to this discussion. Measurements of three-dimensional

focusing in a shock tube have been published by Sturtevant2 6 and by
27

Sturtevant and Kulkarney. The measuremcnts are qualitatively explained

28
by the theory of Whitham. Sanai and Toong modeled sonic boom focusing

on a ballistics range. They observed focusing due to increasing Mach

number ("acceleration superboom") and medium stratification ("refraction

superboom").

Stepwise propagation algorithms have proved to be worthwhile

tools in the study of nonlinear acoustical phenomena. Nonlinear distor-

tion is calculated in the time domain over a short propagation distance.

Then a correction is made for losses and dispersion, which are computed in

the frequency domain. Pestorius 29 used such an algorithm to investigate

the propagation of plane, finite amplitude waves in a tube. He assumed

that all absorption and dispersion were due to the presence of a thermo-

viscous boundary layer. A short time later, Anderson 30 used a similar

routine to analyze the propagation of a spherical N wave in the open

LO- w --..-
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atmosphere. To this date, no author has proposed a solution of the

problem of two-dimensional focusing of either large or small amplitude

waves in a lossy medium. This problem is of fundamental concern in the

present study.

3. Relevant work in applied acoustics. In the preceding paragraphs

we have endeavored to illuminate the diversity of the basic research whichi

forms the foundation of this paper. Let us now examine some applied

research that has provided direction for, and may benef it from, the results

to be presented in this thesis. For example, guided propagation of sonic

booms has received recent attention. Gardner and Rogers 31,32 developed an

elaborate analytical model to describe the propagation of sonic booms in

the thermosphere. They accounted for nonlinear propagation distortion and

atmospheric absorption and predicted a 900 phase shift of the pressure

wave.

Consider next the growing interest in the study of borehole

acoustics. Techniques associated with the use of sound to determine geo-

logic structure have undergone considerable theoretical development. Far-

reaching results for sound propagation within the borehole were given by

Roever, Rosenbaum, and Vining, 33while propagation between boreholes was

studied by Hall, Miller, and Simmons. 34Our investigation concerns a

highly simplified version of the former problem. One of the most impor-

* tant virtues of our study is its simplicity. Full-scale borehole measure-

ments are often quite difficult to explain. It is assumed in the present

* study that one has control of, or at least knowledge of, the environmental

conditions and the physical properties of the tube.
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Finally, we mention the importance of our work to the study of

core noise radiated by turbofan engines. Core noise originates within the

engine, which is basically a duct of finite length. Salikuddin et al. 35

developed a method for measuring the radiation from a duct/nozzle system,

using a spark source inside the duct. The source was located on-axis, and

its spectral density was, for the most part, concentrated below the lowest

cutoff frequency. Consequently, the pulse traveled down the duct as a

quasi-plane wave front. Although the authors do not mention it in the

paper, a portion of the duct surrounding the source was lined with sound

36_absorbing material to suppress unwanted reflections -the very ref lec-

tions we wish to observe. Whether the first few reflected waves (corre-

sponding to the low order transverse modes) were effectively attenuated is

questionable. It is possible, however, that the results to be described

in this thesis may find application in the study of high frequency radia-

tion from ducts and nozzles.

C. Outline and Scope of the Study

The remainder of this thesis is organized as follows. The

experimental apparatus and procedure are described in Chapter II and

sample measured waveforms are presented. Chapter III contains a theoreti-

cal analysis of the problem. The wave equation is solved for a point

source on the axis of a tube containing a lossy gas. Both on- and of f-

axis observation points are considered. The solution is given in terms of

a ray expansion in integral form that is valid for any low amplitude, high

frequency signal. The integral may be evaluated in closed form if the

~ I source is omnidirectional and the medium nondissipative. For less restric-

tive conditions, digital methods are required to evaluate the integral

'74-r -



16

solution. The effects of medium dissipation and receiver directivity

are included in a numerical solution for a real (measured) N wave source

function. Computed waveforms and low amplitude measured waveforms are

compared in Chapter IV. Results of measurements made a high source ampli-

tudes are presented in Chapter V. Differences between the high and low

amplitude measurements are attributed to nonlinear effects. A numerical

algorithm, which includes the contributions of nonlinear propagation dis-

tortion, focusing, and atmospheric absorption, is proposed. Chapter VI

contains a summary of the results and some concluding remarks.

Three appendices are included. Appendix A contains a brief

discussion of the application of a 900 phase shift to a broadband signal.

In Appendix B analytical and digital models of the atmospheric absorption

of a small-signal N wave are derived, and results are compared with data

from a free-medium propagation experiment. Appendix C contains listings

of the programs developed to compute on-axis waveforms for the linear

case.

".7
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CHAPTER II

EXPERIMENT

A general account of the experiment was presented at the

beginning of the previous chapter. This chapter contains detailed descrip-

tions of the measurement apparatus and method, and results obtained there-

from. First, the spark source, aluminum tube, microphone, and electronic

system are discussed. Next, the tiacrophone calibration and system align-

ment procedures are outlined. Finally, measurements of the pressure wave-

forms observed on the axis of the tube are introduced. I,

A. Apparatus

The measurement system was composed of four basic subsystems--

spark source, cylindrical waveguide, condenser microphone, and data

capture equipment (see Fig. 1.1). The important features of each are

described in the following paragraphs.

1. Spark Source. A Spellman Model PN-30 0-30 kV dc power supply

was used to charge a capacitance of 0.083 pF, made up of six 0.5 pF con-

densers connected in series, to between 0.5 and 7.5 kV. The possible

range of spark energies was thus 0.01 to 2.3 J. A 66 MQ resistor wired

in series with the capacitor limited the charging current.

The capacitance was allowed to discharge across a gap between

two diametrically opposed tungsten electrodes. Each electrode was 0.16 cm

in diameter, and its point was ground to a cone of half-angle roughly 300.

4 A lucite ring, 5.1 cm i.d. (the same as thL ±.d. of the aluminum tube),

11.2 cm o.d., and 2.5 cm length, was machined to support the electrodes in

the tube [see Fig. 2.1(a)]. The spark gap was centered on the tube axis;

17
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typical gap lengths were between 0.01 and 0.2 cm. The electrodes were

held in threaded aluminum dowels, which allowed symmetric adjustment of

the spark gap from outside the tube. When the voltage across the capaci-

tor reached the breakdown voltage of air, the capacitor discharged

through the gap. The voltage across the capacitor was monitored by means

of a Simpson Model 260 voltmeter.

2. Aluminum Tube. Two different lengths of tube were used in the

experiments (see Fig. 2.2). The long tube was composed of the lucite

electrode holder, a connecting flange, a 71.1 cm length of aluminum tubing

(wall thickness 0.32 cm.), a second connecting flange, and the microphone

holder. The elements making up the short tube were the same electrode

and microphone assemblies and a single connecting flange, 4.9 cm in length.

The i.d. of each component was 5.1 cm. Care was taken in construction and

alignment of the various components to minimize surface irregularities at

the junctions. The total axial distance from source plane to receiver

plane was 76.2 cm in the long tube and 7.4 cm in the short tube. A 15 cm

length of tube containing approximately 5 cm of fiberglass was fastened to

the back side of the electrode holder to absorb backward traveling waves.

The tube wall could be considered a rigid boundary for the present problem.

A wave front incident on the inside face of the tube wall is

partly reflected back into the air and partly transmitted into the tube

wall. Of concern here is the airborne reflected wave. It is assumed that

4 the boundary is locally re~acting and that shear coupling between the air

* and aluminum is negligible. It is assumed also that the propagation

vector for the incident wave has no circumferential component. Consider

a reflected wave incident on the tube wall at grazing angle e n' The
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angle of reflection is equal to the angle of incidence, and the angle

of transmission 6t is given by Snell's law,
n

coset = (c2/c)cosenn 21 n

where c1 and c2 are the sound velocities in air and aluminum, respectively.

The reflection coefficient Xn for a single reflection is given by

Z sin6 - Z sin6t

2 n 1 n
An = Z sine + Z sinOt

2 n 1 n

where Z and Z2 are the characteristic impedances of the two media. By

the time the signal reaches the receiver, it has been reflected from the

tube wall n times. The cumulative reflection coefficient is therefore

equal to ( X)n. For all cases of interest in this study (n=1-35, long

tube; n=1-15, short tube) 0 is less than the critical angle e = 86.90,
n cr

and as a result Xn is complex. However, since Re [(Xn)n] 0.9 99 90 and

Im[(X)n]O0.0134, we were able to assume with inconsequential error that

the tube was perfectly rigid, i.e., (Xn)=1 for values of n within the

limits specified above.

,o different tubes were used to facilitate accurate measurement

of both long time behavior (amplitude envelope) and short time behavior

(individual pulse waveforms) of the sound field. Because of the high

pulse density and slow decay rate, the long tube data [see Fig. 1.2(a)]

are most useful in an analysis of the amplitude envelope. The pulse

density is lower in the short tube waveforms (all pulses are resol-:zd in

time), but the envelope decays rapidly [see Figs. 1.2(b), 1.3]. The short

tube was therefore used to investigate individual pulse shapes, and the

long tube to study the amplitude envelope.
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3. Microphone and Preamplifier. The condenser microphone and

preamplifier used in this study were developed by Cornet2 5 after designs
37 30

by Wright. Anderson improved the construction process and was able to

obtain a high degree of consistency from one microphone to the next. A

diaphragm of 3.2 p (1/8 mil) aluminized mylar is laid directly on a micro-

scopically rough, conducting back plate. The transducer has a large band-

width and a broad (low Q) resonance. While the outside diameter of the

microphone cartridge used in this experiment is 1.3 cm, the back plate

(and hence the active area) is just 0.20 cm in diameter. Because of the

large bandwidth the transducer is relatively insensitive (sensitivity

2
-67.5 dB re 1 V/N/m ) in relation to most commercially produced condenser

microphones. However, the pressure waves produced in the tube were of

sufficient amplitude that the microphone insensitivity presented no problems.

Although the microphone was nearly a point receiver for low frequencies,

its directivity characteristics profoundly influenced measurements of

shock waves incident at oblique angles. The rise time of the transducer

was measured from its response to moderately strong N waves (traveling in

a direction perpendicular to the microphone face) and found to be approxi-

mately 0.4 usec. The microphone sensitivity, directivity, and frequency

response are addressed in greater detail in Section B, "Microphohe Calibra-

tion." For further details of the general properties and construction of

25
this type of transducer, the reader is referred to the work of Cornet.

It was necessary to baffle the microphone to obtain accurate

measurements. When a sound wave is incident on a freely suspended

circular microphune, a diffracted wave propagates from the edge of the

microphone toward the center. If all points on the circumference are

6a
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insonified by the incident wave at the same time, as is the case for

normally incident and axisymmetric waves, the signals from all points

superpose at the center.

The diffracted wave arrives at the active area later than the

incident wave by a time corresponding to the difference in travel path

lengths AR. If AR is less than or equal to the signal duration At, the two

waves overlap. If, on the other hand, AR>At, the signals are separated in

time. A reflective baffle may be used to extend the face of the microphone

to ensure separation of the signals. The pressure of the incident wave

sensed at the surface of the microphone is twice the freefield pressure.

A special flange assembly was constructed for the purpose of

mounting the microphone on the tube axis [see Fig. 2.1(b)]. Approximately

6.5% of the tube section area was occupied by the microphone cartridge.

In order to minimize the effects of diffracted waves, a 12.8 p (1/2 mil)

mylar baffle was stretched loosely over the remaining area. The baffle is

t
quite rigid at the high frequencies of interest. The calculated reflec-

tion coefficient is nearly equal to unity for frequencies greater than

50 kHz, and falls to 0.7 at approximately 10 kHz. Lateral positioning

of the microphone/baffle within the tube was accomplished through adjust-

ment of two pairs of diametrically opposed setscrews.

" The microphone preamplifier was mounted on the outside of the

receiver assembly, and was connected to the microphone cartridge through

the tube wall by a 15 cm length of low capacitance cable. The hole

• 4.

The baffle was originally designed to simultaneously reflect high
frequency (f > 10 kHz) waves and pass low frequency (f < 10 kHz) waves.
We are interested in frequencies between 10 kHz and I MHz.
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in the tube wall, 6.4 mm in diameter, was located behind the baffle.

Both calculation and measurement showed that the effect of the extra cable

capacitance on the sensitivity was insignificant. Anderson measured the

frequency response characteristic of the preamplifier as flat within

±0.16 dB from 250 Hz to 2 MHz.

4. Data Capture and Storage. The signal from the preamplifier was

input directly to a Nicolet Model 2090-111 digital oscilloscope, which was

equipped with a Model 206-2 plug-in unit. Because the instrument's maximum

digitizing rate is 2 MHz, its useful bandwidth is 1 MHz. Use of the entire

4096-point memory permitted the storage of 2 msec of data with a time

resolution of 0.5 psec/point and 12-bit accuracy. The transient capture

capabilities of this unit were especially well suited to our task.

Electromagnetic radiation from the spark discharge, picked up by a loop

antenna, was used to indirectly trigger the oscilloscope. The trigger

signal opened the gate of an EH Model 130 pulse generator set in single

pulse mode. The oscilloscope was triggered some time later by the nega-

tive going edge of the pulse. By varying the pulse width one could

delay the oscilloscope trigger until the acoustic wave arrived at the

receiver. Captured waveforms were saved by either of two methods. Long

waveforms (>100 points) were plotted directly on a Barry Research Model

5002 x-y recorder. Individual pulses (<100 points) were read out visually,

point by point, and typed into computer memory for plotting at a later
I

time.

B. Microphone Calibration

Several microphones fabricated by Cornet and Anderson were

available for use. The rise time, overshoot, and sensitivity of each in

AL
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response to N waves of equal amplitude were measured with a Tektronix

Model 5403 analog storage oscilloscope (an analog oscilloscope was used

in this instance because its higher bandwidth allowed more accurate deter-

mination of the rise time and overshoot parameters).

The bandwidth of a transducer can be determined from measurements

of its rise time. The high frequency limit to the response of a conven-

tional condenser microphone is set by the mechanical resonance of the

diaphragm mass against the stiffness of the air cavity between the dia-

phragm and backplate. Above the resonance frequency the response rolls

off at 12 dB/octave. The bandwidth of a simple resonant system of

this sort may be inferred from step response measurements according

to a relation stated by Waliman, 3

2Tff 0.69 ,(2.1)

where T is the 10-90% rise time and f cis the -3 dB rolloff frequency.

Our rise time measurements, however, were based on an N wave input, not a

step input. Nonetheless, it may be demonstrated that when Tr is much

smaller than the N wave half-duration, the response of a low pass filter

or damped oscillator to an N-shaped signal is closely approximated in the

neighborhood of the head shock by the response to a step function of equal

amplitude. The diaphragm of our microphone is placed directly on the back-

plate, and air is trapped in the microscopic cavities thus formed. The

transducer, then, is a parallel combination of many small microphones

of different sizes and, hence, different resonance frequencies. Cornet

has shown that the frequency response of a parallel combination of

microphones whose resonance frequencies are randomly distributed in a

tdecade f 0 :f: 0 f 0is similar to that of a single microphone whose reso-

nance frequency is f . The major difference between the two cases is that
A0
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the multi-element system has a lower Q than the single microphone. Equa-

tion (2.1) was derived for a single microphone, but in light of the

similarity just noted, it may be used to estimate the bandwidth of

the multi-element microphone. Using Wallman's relation and the meas-

ured value of T = 0.4 usec, one finds that the bandwidth is approximately

860 kHz. (A similar problem, the response of a Gaussian filter--the

atmosphere--to an N wave, is discussed in Appendix B of this work.)

Microphone ringing was apparent in measurements of high

amplitude N waves at short distances. The initial overshoot was of the

order of 8%. Wallman's calculations show that the corresponding ratio of

gain at resonance to gain at midband (this ratio is proportional to Q) is

1.05, or 0.4 dB. It is thus inferred that the frequency response of our

microphone is flat within +0.5, -3.0 dB from near 0 Hz to 860 kHz.

Amplitude calibration of these transducers, which is done in the

freefield, remains a rather tedious process. Cornet, Anderson, Cobb, and

others have used a technique first described by Davy and Blackstock.
23

The method is based on certain amplitude dependent effects caused by

nonlinear propagation distortion of finite amplitude N waves. The peak

pressure amplitude P and half-duration T of a spherically divergent (ideal)

N wave at radial distance r are related to the pressure P and half-o

duration T at some reference position r° by the following:
00

.44

rP = rP[1+oln(rfr, (2.2)

T To[l+ooln(r/ro)]1/2 (2.3)
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where

a +i) roPo
_ __0 0(24

o 3 T (2.4)
2p0oC o

and po, co, and y are the density, small-signal sound speed, and ratio of

specific heats, respectively. Multiplying Eq. (2.2) by Eq. (2.3), one

finds that the product TrP is constant, i.e.,

TrP = T r P 0 (2.5)000

If Eq. (2.3) is squared, the result is

2 2 2T2 = T + a T ln(r/r) (2.6)

Let the microphone sensitivity be defined as S=e/p, where e is the measured

voltage and p is the free-field pressure (the pressure that would exist

in the absence of the microphone). Equations (2.4) and (2.5) may be com-

bined to yield

p 2pc 3 aoT 2

00 0 0(27

- (y+l) TrE (2.7)

where E is the voltage corresponding to the peak pressure P. The two

T2
parameters a T and TrE may be determined from measurements of the N wave

00

amplitude and half-duration at various distances. The first is just the

2
slope of T versus ln(r/r ) [see Eq. (2.6)], and the second may be

0

accurately determined by calculating the average value of TrE over the

various measurement positions.

A special procedure was used to determine T and P at each

measurement distance r. The procedure was designed to reduce variability

SA. a
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caused by lack of repeatability in the spark production process. The

transient capture capability of the digital oscilloscope allowed us to

record N wave data much faster than was possible with an analog oscillo-

scope. The following method was used to determine the average peak volt-

age and half-duration at Pach measurement position. First, the breakdown

voltage for each spark discharge was monitored with the dc voltmeter, and

only those waveforms whose breakdown voltage was within 0.1 kV of the

desired value were stored in the oscilloscope memory; approximately 25%

of the discharges were within these limits. Ten acceptable N waveforms

were stored for each measurement position, and average values of E and T

were computed (typical standard deviations were between 2% and 5%). The

spark source was then allowed to discharge until a waveform was captured

whose amplitude and half-duration values were equal to the average values

for that location. This waveform was called an "average waveform". The

effects of microphone overshoot and finite rise time were identified in

the measured N waves. A least-squares fit of the measured points in the

first half of the waveform was performed in order to smooth the ripple

caused by microphone ringing. The idealized head shock was located at

a point midway between the foot and peak of the measured waveform. The

idealization procedure is illustrated in Fig. 2.3. When the measured rise

time (10-90%) Tr was greater than 2 ijsec, ringing was absent and the ripple

smoothing step was omitted. The peak voltage E determined from the

idealized waveform was used in all subsequent calculations. For more

detailed descriptions of this idealizing procedure, see Refs. 19, 30.

N waveforms were recorded at eight source-receiver distances

from 5 to 125 cm for a spark energy of 0.42 J and temperature 250C
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The standard deviation oi each of the 10-term averages of E and T was

less than 5%. Data for large distances (r = 90, 125 cm) was discarded

because it clearly departed from the general trend. It is believed that

the waves at these points were too weak to be adequately described by

weak shock theory. The value of a T2 was computed from a linear regres-

sion of T versus ln(r/ro). The results are summarized as follows (see

Fig. 2.4):
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TrE = 0.171 psec-mV , standard deviation = 5.4% ,

T2 2
a T 10.25 Psec correlation coefficient = 0.9996

00

and finally,

S-1 = 23.85 mbar/V

It should be noted that S is the sensitivity of the overall receiver,

including pressure doubling and preamplifier gain. The high degree of

correlation is attributed to careful monitoring of the spark breakdown

voltage, the accuracy of the oscilloscope, and the procedure of obtaining

an average rather than a single measurement at each distance.

The amplitude linearity of this type of wideband transducer had

not been previously studied. We compared the response of our microphone

to that of a Bruel & Kjaer (B&K) Type 4138 1/8 in. condenser microphone and

B&K Type 2619 preamplifier using normal incidence, spark produced N waves.

The B&K combination has a specified distortion at 100 kHz of less than 4%

for sound pressure levels below 177 dB (re 2 x 10- 5 N/m2 ). It was there-

fore assumed that the B&K unit is a linear receiver for N waves whose peak

overpressures are less than 142 mbar. The rise time of the B&K microphone

was found to be approximately 2 Wsec; hence, it was necessary to base the

amplitude comparison on the negative pressure peaks of the N wave signa-

tures, where the waveforms are more slowly varying. Twelve peak voltage

measurements were averaged fo:: ea h transducer at each position and spark

energy. Linearity of the wideband transducer was confirmed up to a peak

pressure of 28 mbar. While making measurements of large amplitude waves

in the tube, we found that the transducer or the preamplifier was overloaded

(i.e., the output was temporarily open circuited) by pressures in excess of

75 mbar.
A

* -- *-- - - *- - -L-* -
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C. System Alignment and Experimental Procedure

Because we were attempting to focus and reproduce sound waves of

very high frequency, proper alignment of the source, waveguide, and

receiver was critical. The same general assembly procedure was followed

for both the short tube and long tube systems. This procedure was satis-

factory for alignment of the long tube. However, measurements made in the

short tube indicated that not all pulses were optimally focused; so addi-

tional adjustments were made for waveform measurements in the short tube.

The general procedure was as follows. First the spark gap and

microphone were centered in their respective flange assemblies, and the

flanges were bolted onto one of the tubes. Care was taken to make the

joints as smooth as possible. Fine adjustment of the microphone in the

lateral direction was accomplished by turning the adjustment screws

(located on the outside of the receiver assembly) until the recorded

pulses were as large in amplitude as possible. For the long tube all

pulse amplitudes were maximized when the microphone was located on the

axis.

No single alignment of the short tube optimized focusing

(maximized pulse amplitude) for all pulses. Apparently, the source and/or

receiver was not positioned precisely on the tube axis. In order to

obtain accurate measurements in the short tube, we adjusted the lateral

microphone placement for each individual reflected wave, thus ensuring

that each pulse was optimally focused. This multi-step procedure required

that a different spark be used for each observation. An averaging routine,

similar to the one discussed in the section on microphone calibration,

was used to suppress the variability in pulse amplitude. After the



33

alignment was optimized for a particular pulse, twenty waveforms, whose

associat.d spark discharge voltages were restricted to a specified narrow

range, were captured in the oscilloscope memory. The average peak ampli-

tude was then computed, and the spark source was allowed to discharge

repeatedly until an "average waveform" having the same amplitude as the

computed mean was received. Average waveforms were transcribed from

the oscilloscope point by point and typed into a computer for plotting

at a later time. Results obtained using this method were more consistent

Rnd, presumably, more accurate than those obtained from a single spark

discharge.

D. Preliminary Results: Sample Waveforms

Waveforms measured in the long and short tubes were presented

in Chapter I (see Figs. 1.2, 1.3). Recall that the spark energy was

0.16 J, and the microphone remained stationary as it received an entire

series of pulses. It is likely that not all of the individual pulses in

the short tube waveforms [Figs. 1.2(b), 1.3] are optimally focused.

The direct N wave and the first four reflected pulses, measured

in the short tube according to the special shc~rt tube alignment procedure

outlined in Section C above, are shown in Fig. 2.5. The ubiquitous aver-

aging procedure was used to reduce the results of twenty measurements for

each n to a single "average waveform." The spark voltage was 1.0 ±0.1 MV

Peak sound pressures of the direct and reflected signals were

large enough to motivate a test for nonlinear propagation distortion.

[he test results proved negative, however. The breakdown voltage was

reduced (the sp-rk gap shortened) so that the peak pressure of the direct

wave wa3 reduced from 3.25 mbar to 1.0 mbar. The shapes of the reflected
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pulses remained basically unchanged; we are therefore confident that

nonlinear propagation distortion is of little consequence in the I kV

(0.04 J) data. Since (as will be shown in Chapter III) the wave amplitude

decreases as it propagates down the tube, it is assumed that distortion is

also negligible in the long tube, for a 0.04 J spark. Still, propagation

distortion may be significant at higher source levels. Consider, for

example, the waveform f or a 0.16 J spark in the short tube (see Fig. 1.3).

The second reflected pulse has a (negative) peak pressure amplitude of

55 mbar. Waves of such high amplitude may become distorted over very

short distances. Clearly, nonlinear effects in this problem merit serious

consideration.

Further experimental results are presented later in this work.

Low amplitude waveforms are compared with theoretical predictions in

Chapter IV. Measurements of high amplitude pressure fields in the tube

are discussed in Chapter V.



CHAPTER III

THEORETICAL ANALYSIS

In this chapter a mathematical analysis of the experiment is

given. The tube is modeled as a rigid cylindrical waveguide of infinite

length, the spark as a point source. An approximate form of the inhomoge-

neous thermoviscous wave equation is solved by Fourier transform methods.

The result is a frequency domain expression for the pressure field as a

sum of direct and reflected signals. Focusing and refocusing of the

reflected waves on the axis cause a cumulative phase shift, which

sequentially alters the shapes of the received waveforms. An explicit

solution for the time waveform received on-axis is determined analytically

for the special case in which (i) the medium is lossless and nondispersive,

(ii) the microphone is an ideal point receiver, and (iii) the source

signal is an ideal N wave. Finally, the effects of finite receiver size

and atmospheric absorption are included in the frequency-domain solution,

and the reflected pulse time waveforms are computed by application of a

digital fast Fourier transform (FFT) routine. Waveforms determined

from the analytical results are presented in this chapter, while results

from the digital computations are delayed until Chapter IV.

A. Mathematical Formulation of the Problem

'91 The experiment is analyzed mathematically as a boundary-value

problem. The tube is considered a rigid boundary, infinite in length,
4

and the spark is assumed to be a point source located on the tube axis.

The medium, air, is a relaxing, thermoviscous (i.e., viscous, heat con-

ducting) fluid. Sound propagation is assumed to obey the linear

* r36
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thermoviscous wave equation. Molecular relaxation, which causes

dispersion and absorption, is omitted from the initial statement of the

problem. Dispersion is small enough to be neglected. Absorption, on the

other hand, which depends on frequency, humidity, temperature, and ambient

pressure, is important and must be included in the analysis. It is

accounted for ad hoc: After the problem is solved for a nonrelaxing

fluid, the effects of relaxation absorption are simply added to the result.

First, however, the inhomogeneous, thermoviscous wave equation is derived

from the inhomogeneous equation for a lossless medium and the homogeneous

equation for a thermoviscous medium.

The linear homogeneous wave equation for a lossless fluid is

V2 - 2
V 2p-c 0 (3.1)

0 t

where p=p(R,t) is the acoustic pressure, R is the vector propagation path,

c is the small-signal sound speed, and subscript t denotes differentiation with
0

respect to time. The solution of Eq. (3.1) for spherically symmetric outgoing

waves is
Rp = f(t-R/co) , (3.2)

where f is an arbitrary function of its argument and RIRI. The pressure

radiated from a point source located at RE0 satisfies the following

inhomogeneous wave equation:
39

2 -2

V p - c = -4r f(t) 6(R) (3.3)
0 tt

where 6 is the Dirac delta function and f satisfies the homogeneous

equation, Eq. (3.1), as above. If the amplitude and time dependence of

the pressure at radius R are defined by P and N(t), respectively, then0 0

we may write

hi
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f(t-Ro /c 0 Ro P N(t-R /C ) (3.4)

Furthermore, if we let R +0 and P -- in such a way that the product
0 0

R P remains constant, then we obtain00

f(t-Ro/c ) / f(t) w R P N(t) (Ro-0)
0 a 0 0 0

The inhomogeneous wave equation for a lossless fluid containing a point

source may now be expressed thus:

2 -2

V2p - c P = -4nP0 R N(t) 6(R) (3.5)ooo

The linear, homogeneous wave equation for propagation in a

thermoviscous gas ist,
4 0

V2 p-1 + + 1 V 2pt = 0 , (3.6)V2P- " tt L Pr 2

0 Po 0

where

), and p are the dilatational and shear coefficients of viscosity,

respectively,

y is the ratio of specific heats,

Pr is the Prandtl number, and

pO is the ambient density.

It is assumed that the point source expression derived for the lossless

medium and given by the right hand side (RHS) of Eq. (3.5) is also

tNote that Eq. (3.6) is approximate; thermal and viscous terms have been
combined.

*2
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applicable in the case of a thermoviscous medium. The inhomogeneous,

thermoviscous wave equation is therefore

V 2P - 1 2Pt +  2 t= -47P R N(t) 6(R) (3.7)

c c
0 0

where

v = P/p ° is the kinematic viscosity, and

r X + 2p _ + -I
11 Pr

Let us now specialize Eq. (3.7) to our particular boundary value

problem. We choose an axisymmetric cylindrical coordinate system in r and

x [see Fig. 3.1(a)]; then we have

p = p(rx,t)

and

1 2V2 1 a (r ax 2

r P

i ".

R k

(a) SPACE VARIABLES (b) TRANSFORM VARIABLES

FIGURE 3.1
AXISYMMETRIC COORDINATE SYSTEM

ARL:UT
AS-80-1363
ROE -GA
7 .a- 80

a - -7-8-*0
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Noting that by definition the integral of 6(A) over all space is equal to

unity, one may easily verify that the axisymmetric delta function located

at r=0, x=0 is given by

6(i) = 6(r) 6(x) (3.8)nr

Finally, the linear thermoviscous wave equation, with a point source of

amplitude Po R and time dependence N(t), is

V2 p 2 + Pt -- 2 = -4P R N(t) 6(r) 6(x) (3.9)
c c

0 0

Our experimental system is bounded by a rigid tube of finite

length. One end is terminated by the rigid microphone baffle, the

other end by an absorptive fiberglass plug. Forward traveling waves are

reflected once by the baffle and then absorbed by the fiberglass; backward

traveling waves are absorbed directly. The microphone actually senses each

wavefront more than once. First the "primary" wave sweeps across the

baffle. Then a "secondary" reflected signal, generated by the incident

wave at the junction of the baffle and the tube wall, sweeps back across

the baffle. When the reflected wave again reaches the tube wall, it in

turn generates a twice-reflected wave, and so on. It turns out that theAI
secondary waves reflected from the baffle/tube junction are of little

consequence. They appear as noise between or added to the primary pulses.

t b
Note that) 6(r)dr = -, because the radial coordinate r cannot be negative.

0

q7

A

A L
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Although they have some effect on the measurements, we choose, for the sake

of simplicity, to neglect their presence in our theoretical analysis.

Hence, the waves of interest (the primary waves) are equivalent to the

waves that would be observed in an infinitely long tube. The simpler case,

an infinitely long tube of radius a, is chosen for our mathematical model.

Boundary conditi s are given as follows:

p finite at r 
= 0 (in the absence of sources) (3.10a)

0 at r = a (rigid wall condition) (3.1Ob)

0 at r = a (no slip condition). (3.10c)

where subscripts denote partial differentiation. Since we have decided

to neglect boundary layer absorption, we will neglect the axial boundary

condition, Eq. (3.10c), and retain only conditions (3.10a) and (310b).

Our method of solution hinges on the fact that only in the radial

direction is there a boundary; both x and t are infinite in domain.

Fourier transform techniques are used to reduce Eq. (3.9) to an ordinary

differential equation in r. The boundary conditions Eqs. (3.10a,b) are

then applied, and finally the inverse transforms are performed.

B. Fourier Transform t- w. x-

Let P be the Fourier transform of p with respect to time,

P(r,x,w) = I[p(r,x,t)] / p(r,x,t) e - j wt dt (3.11)

4 '
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If we transform Eq. (3.9) according to Eq. (3.11), we find that P is a

t
solution of the inhomogeneous Helmholtz equation

V 2P + k2 P = -4P R F(w) 6(r) 6(x) (3.12a)
0 0 r

in which

k= (/C.)2/(i + jwv F/c2 ) (3.12b)

and

F(w) = TN(tfl/(1 + jWV P/cs 0 (3.12c)

We may similarly define the Fourier transform of P with respect to the

axial coordinate x by

P(r,,w) P(r,x,w) Jejx dx (3.13)

Transforming Eq. (3.12a), we obtain an inhomogeneous form of Bessel's equation

of order zero

r (rPr)r + P =4PoRo F(w) r (3.14)

where the radial wave number p is defined in terms of the axial wave

number $ by p- - . The transformed boundary conditions are

P finite at r = 0 [for the homogeneous solution of (3.15a)

Eq. (3.14)]

S0 at r = a (3.15b)

.It can be seen by inspection that if other agencies of dissipation, e.g.,
relaxation, are included in the original wave equation (3.9), the expres-
sions for k and F would have been more complicated. Such a possibility

- is considered In Section E.

• .- - . ... . -Z . .. .7



43

The propagation constants C and p may be thought of as the projections of

the vector wave number k on the axis and the source plane, respectively.

If e is the angle k makes with the axis, then E k cos6 and p - k sin6

[see Fig. 3.1(b)].

C. Solution of the Radial Equation

The general solution of Eq. (3.14) is the sum of a particular

solution P , which satisfies the inhomogeneous equation, Eq. (3.14),
p

and a complementary solution Pc, which satisfies the associated homogeneous

equation. The total solution must satisfy the boundary conditions on P at

r=a and r=O. The complementary solution may be written at once:

- (1)(2)
= A H 0 (pr) + B H 0 (pr)

where H(1 )(z) and H(2)(z) are zero order Hankel functions of the first and
0 0

second kinds, respectively, and A and B are constants to be determined from

the boundary conditions.

The inhomogeneous equation has a singularity at the point r=0.

We now proceed to determine a Green's function solution which has the

correct behavior near the origin, as well as in the farfield. Our method

closely follows that of Morse and Feshbach [Ref. 41, pp. 808-8111. Let

G(r) be the solution of the following dimensionless form of Eq. (3.14):

2 2
V G + p = -47 6(r) (3.16)

In the present case, the axisymmetric, two-dimensional Laplacian and the

radial delta function are defined by

=r r r

6(r) = (2/r) 6(r) , r HI

I.7
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It is evident that, since the source is omnidirectional, the behavior of

G for small 111 must also be omnidirectional, i.e.,

Gr) - g(r) Ol - 0)

First let us integrate Eq. (3.16) over a small circular area

of radius e. Since the integral of the delta function is unity, we have

f v 2G dA + p2f G dA - -4 (3.17)

In the limit of vanishingly small E, we may replace G with g. If it is

assumed that the Laplacian of a singularity is more singular than the

singularity itself, the second integral may be neglected, and we are left

with

A V2g dA = -4n (E-0) (3.18)

Next, Gauss' theorem is employed to transform the area integral into a

line integral around the perimeter of the circle,

Vg dr -4i (s-0) (3.19)

Since g depends only on r, Vgfg r is everywhere parallel to dr. We can

now solve for the behavior of g near the origin by evaluating the line

integral,

2 11- -4T ( ---O)

or

g(r) = -2kn(r) (r-0) (3.20)
.2

Apparently, we were justified in neglecting the area integral of g.

Since Eq. (3.14) is a form of Bessel's equation whose RHS

denotes a source, we wish to find a Bessel-type solution for outgoing

-- ;|.i i ' " '- ,C... 7'.. .. . .. - --.
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waves that has a logarithmic singularity at r=O. In fact, the zero order

Hankel function for outgoing waves has the required properties (see, for

example, Ref. 41, pp. 890-8911:

H((z) - Z2 n(z) (lz HO) (3.21a)0 1

H (2)() 1( )2 exp[-j(z-Tr/4)] ( )zj (3.21b)

Hence, the particular solution of Eq. (3.14) ist

p -jrP 0R F(w) H (2) (Pr) (3.22)

The general solution is given by the sum of P and P , i.e.,

P A H(1)(pr) + B H (2) (pr) - j7P R F(w) H(2) (pr) (3.23)
0 0 00 0

and the boundary conditions, Eqs. (3.15). The behavior required by

Eq. (3.15a) is already satisfied by the third term on the RHS of

Eq. (3.23). The first two terms must therefore cancel each other as r-0.

The small argument behavior of H (2)(pr) is given by Eq. (3.21a).
0

Similarly, HM1 )(pr) behaves thus:
0

H)(pr) -* Zn(pr) (IpriHO)

The first boundary condition therefore becomes

A in pr - B Zn Pr = 0 (r-0)

or

B = A (3.24)

tHad he forcing function on the RHS of Eq. (3.16) been 46(r) instead of
-47T6(r) (i.e., a "sink" instead of a source), the correct solution would
have been the Hankel function for incoming waves JiPoRoF(w)HMI)(pr).

0'0
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The pressure is

P - A H(1)(pr)+H(2) (pr)]- jnP R  F() H(2)(pr) (3.25)

The matching coefficient A is determined from the boundary

condition at the tube wall. Substituting Eq. (3.25) into Eq. (3.15b), we

obtain

A 2 7rjP 0R 0F(w) (.6

i + [ (pa)/H(2) (pa

The transformed pressure P(r, ,w) is completely determined by Eqs. (3.25)

and (3.26). Noting that

J (z) = 2[ l (z)+H (z (3.27)
m 2

we find for the exact solution,

PoR F(M) - JH(2) (pr) + 2ITjJ (pr) + H (l)(pa)/H (2)(pa .

(3.28)

Alternatively, the expression for A may be expanded as a power series

A -- 2 njP oR 0 F(w) (-1) nH 2 (pa )/ H l) (p a ) n (3.29)
n=l

Then Eq. (3.25) assumes the form

=T PoF()- (2) (pr) + 21JJo(pr) (_l)n [(2) (pa)/H i))(pa )f
n=l

(3.30)

No technique has been found by which to calculate the exact

inverse transform of P. We must therefore make some sort of approximation

" : 'VF . , , -v -"--- ...- -"
7M -7..-
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prior to attempting the inversion. One approach is to invoke the short

wavelength assumption upon which any "geometric acoustics" model is based.

Specifically, we require that 1paI>>l. The validity of this assumption

will be investigated later. Here it is sufficient to note that the range

of 1kal important to the present problem lies above 5. Given the large

argument behavior of the Hankel functions,

(~1 )(z) (21/ j[z-(2m+1)7t/4] (IzI>>M)

(~2~) (21/2 el[z(2m~)l) Tr41 (zIm

one may easily show that

(2)
H1  (oa) *j

(Ia) e jpa (jpaj>l) .(3.31)

This relation is substituted into Eq. (3.30) to yield the following

approximate solution for the transformed pressure:

"-(2 - Pa u i

~ in-I

P0PR 0F (w)[jiH 0()pr) + 27rJ (pr) e .32

At this stage in the analysis, a correspondence between the
experimental and theoretical results becomes apparent. The first term in

Eq. (3.32) can be recognized as the direct wave; it is the only term with

a singularity at r=Q. It turns out that the terms in the series represent

the sequence of reflected signals observed at the microphone. The presence

n-l
of the factorta indicates that the phase changes by e/2 from one

reflected signal to the next. The implication of the factor exp(-j2npa) is

M

H()()Iz J[-2~)1] (z>m

.-- 2.i
*( ) ( ) ~e -9 -  2 9 /  J  ( '-> m

one may- easily show-that
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that the distance traveled increases with n. We shall return to this point

in the analysis after a brief digression, in which Eq. (3.30) is rederived

via a more physical approach, the method of images.

D. Alternative Derivation of the Guided Pressure Field--The Method

of Images [see Ref. 41, pp. 812-8161

The guided pressure field may be built up as a superposition of

waves that originate at ring-shaped image sources and propagate in an

unbounded medium (see Fig. 3.2). Let the microphone (M) be located a dis-

tance L from the real source. The image sources lie in the plane x=0, and

their radii rn are integer multiples of the tube diameter, i.e., r n=2na.

All of the ring sources "fire" simultaneously, but the waves emitted are

not all the same. Indeed, the relative amplitude and phase of the signals

emitted by each pair of adjacent rings is determined from the boundary

condition at r=a. For r<a the field produced by the image waves is the

same as the actual reflected field.

Each of the signals emitted by the image sources corresponds to

a real wavefront that is confined by the tube. For example, the signal

originating at the first image source S1 corresponds to the wave that is

reflected once from the tube wall at the point r=a, x=L/2 (denoted by

A11 in Fig. 3.2). In fact, the real and image waves coincide on the ray

segment A 1M. Like the real wave, the image wave focuses at the microphone;

the angle of incidence is denoted by el. The wave emitted by the second

image source S2 corresponds to a wave that is reflected at the points A21

(r=a, x=L/4) and A2 2 (r=a, x-3L/4). Between reflections the real wave

passes through an intermediate focus, labeled 01. The reflected wave and

the second image wave meet at A22 and impinge on the microphone at angle
q2
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2 The twice-reflected wave and the first image wave intersect at A21.

In general, the nth arrival after the direct wave undergoes n reflections

and passes through n-l foci before it reaches the receiver, and at each

reflection point A (i=l,2,...,n) the nth reflected wave meets the ith

image wave. Both leave the point Ani at angle en with respect to the axis,

focus at Oi , and diverge to An(i+l). There, the ith image wave continues

to diverge, but the bounded wave takes the value of the (i+l)th image wave.

The nth reflected wave travels along the path of each image wave

(i=l,2,...,n) in succession until it reaches the microphone.

The total signal received at the microphone is equal to the sum

of the signals received from the real source and from the ring sources.

The transformed pressure may be written in the form

P(r) = B0 0 (r) + Bnr) , (3.33)
n=l

where = in+ out denotes the behavior of the incoming and outgoing image

waves in the radial direction, and the B are constants to be determined
n

from the boundary conditions. The first term (n=0) corresponds to the

direct wave, and the rest of the series (n>O) corresponds to the sequence

of image waves. The functions Pin (incoming waves) and out (outgoing

waves) are solutions of the inhomogeneous form of Bessel's equation,

Eq. (3.14). It has already been shown that the solutions for incoming and

oH(1)(ranH (2)(p)reecilyan
outgoing waves are proportional to H( r) and H( r) respectively, andS0 0

that the direct wave is given by the particular solution of Eq. (3.14),

i.e.,

B0'0 = -jP R F(w) H(2 )(pr) (3.34)

Bo7o o- 7- 7



The boundary conditions at r0O and r-a 
are used to determine 5

the coefficients B and the function p. The particle velocity must vanish
n

at r=a; alternatively, the pressures of the incoming and outgoing waves

must be equal there. Consider the case n~l. At the point A11 the wave

diverging from 0 meets the wave converging from S V The outgoing pressure

wave is of the form B H(2 ) p) n h icmn aei B H~1 )(pr).
0 0 1p) an0h nomn aei

Equating the pressures at r=a, we find that the signals emitted by the first

ring source and the real source are related by

B /Bo = H~2 (pa)/H(l) (pa)

Similar use of the boundary condition at A results in an expression that
22

relates the waves emitted by the first and second ring sources,

B /Bi 2 (pa)/H- (p a)

whence

Bw/B H (2) (pa)/H( (n a )]2

2 0 0 0

In general the signal originating at the nth image source is related to

the signal leaving the real source by

B /B = t(2) (pa)/Hl' ) (pa)]n (3.35)
n o L0 0

Since both incoming and outgoing waves are pesent in the tube,

must be a linear combination of H(l)pr) and H'()(pr). The only such coinbi-
0 0

nation that satisfies both of the boundary conditions is

H(2)pr) +)H I ) (pr)10 0

wh e Z Ic

B2/o=[H2 ) (0a/H
I ) (p)] . ..
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or, by Eq. (3.27),

2J (pr) • (3.36)

Substituting Eqs. (3.34), (3.35), and (3.36) into Eq. (3.33), we obtain

for the pressure

FM Pj H(2) (pr)+ 2vJJo(pr) nQ [H(2)(pa)/H(1)(pa)l•n 1
(3.37)

which may, with a little algebra, be put in the form of Eq. (3.30),

section C.

E. Inverse Fourier Transform C -x: Method of Stationary Phase

Having found a solution in r subject to the boundary conditions

at r=a and r=O, we now compute the inverse Fourier transform & -x to

re over the pressure as a function of space and frequency. The inverse

transform of Eq. (3.32) is

P(r,x,w) P R F(wi)(-j/2) H()[k2_2 ej d& + En10 o n=1  n

(3.38a)

where

n122)1/21 2_ /2 /
P n P0R0 F(W j J k ) exp LJx-j2na k C J dt

(3.38b)

Evaluation of the first integral in Eq. (3.38a) yields the following ex-

pression for the direct wave:

(, -JkR
P R F(w) e

0 0 R

where

R (X x+r2)1/

'..

a-7 I ,il ' - " - -'"".. . -
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In order to compute P we make the substitution k cose, where
n

8 is the angle between the propagation vector k and the tube axis (see

Fig. 3.1(b)] and 0_06_S. With this change of variables Eq. (3.38b) becomes

jn-i/0T-ik(xcos6+rnsine)

Pn = P R F(w) e J (kr sine)k sine d6

(3.39)

where rn= 2na. The expression for P contains an integral of the generaln

form

I = fb f(O) ek1(') dO

where Im[kB)]O and Re[kB]<O (recall that Im[k]<0). This integral is now

evaluated for values of jk j>>l by the method of stationary phase. For a

concise description of the method the reader is referred to the work of

Sneddon.4 2 Observation points very close to the axis are considered first;

later the case of off-axis points is treated.

Let us assume Im[k3] is large enough that exp[ka(6)] varies

much faster than f(6). Then the integrand oscillates rapidly over most

of the domain of integration. However, when 6 is equal to 6n, which

satisfies the equation

a'(e n ) = 0 , (3.40)

the exponential is constant. For this reason 6n is called a "stationary

point" of the integrand. It turns out that for large values of jk$ I the

dominant contribution to the integral is accrued in the immediate vicinity

of e . The result of the integration is
t

t There is an error in Sneddon's final calculation. The integralf_ e-U2du

is equal to
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k8 (6n) 1/2

I = e (a f(0n) _2/kB,,(8n)] (Ik6i ) (3.41)

The amplitude and phase functions specific to our problem are

f() - k sine J0 (kr sine)
0

and

= -j(rn sine + x cos0)

Both f and oscillate rapidly when IkBj is large. In the present problem

kr and kx are much larger than kr. The assumption that expfk (O)J variesn

more rapidly than f(e) is therefore valid. Separate consideration of the

integrand for 05 0 S__/2 and 7T/2 <a<_ leads to a solution of Eq. (3.40)

that defines two stationary points. For values 0_< 0-511/2, which implies

that the receiver is located at a range x>O, there is one stationary point,

defined by
0 = tanir

ta __ (3.42)
n x

Equations (3.41) and (3.42) are used to reduce Eq. (3.39) to

1/ n-l R-1/2 kn

P (r,x,w) = P R F(w)(2rjk) / 2  R sine J (kr sine ) e
n o 0 n n 0 n

2 0 2 n 1(3.43)

where Rn x+r and / e

In essence, the method of stationary phase is a vehicle by which

we can determine the trajectory 0n of each reflected wave and the contribu-

tion Pn of each reflected wave to the total signal received by the micro-

phone. Although the source radiation is uniform in all directions, only

those rays for which 0=0 (given by Eq. (3.42)] contribute appreciably to
n

the received signal.

-,
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The implications of Eq. (3.43) are most interesting. The nth

reflected wave travels a total distance R, which is the distance between

the receiver and the nth image source (see Fig. 3.3). The signal is

diminished by cylindrical spreading and atmospheric absorption over the

entire travel distance. At the same time, its amplitude varies with r

according to the Bessel function factor. The amplitudes of successive

reflections increase as sine n , and as has been noted, the phase lag

increases in increments of n/2.

Consider the functional dependence of P on k as r-.O. The Bessel

function tends to a constant, and the wave number appears only in the

A22

*1 FIGURE 3.3
TRAVEL PATHS OF REAL AND IMAGE WAVES

n 2

I

4 
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factor (jk)11 2. Here the relationship between spherical and cylindrical

focusing is brought to light. It is well known that the waveform that

exists at the focus of a three-dimensional mirror is equal to the deriva-

tive of the convergent reflected signal (see, for example, Cornet,

Ref. 25). The Fourier transform of the derivative of a function g(R) is

given by

g (R jkG

where R is the distance from the focus, and G(k) is the Fourier transform

of g(R). Blackstock 43 has described an analogous "half-derivative"

operator whose Fourier transform has the following property:

L/ 2 g(R (jk)1/2 G(k)

One may thus speculate that a general focusing factor for the transform

space is expressed by (jk) , where ( -l-2 for two-dimensional waves and

i- for three-dimensional waves.

When the observation point is far enough off-axis that

kr sin,. 7' 1 (which requires r - 0.3 cm when f = 30 kHz and e=e in the

long tube), the stationary phase integration must be redone because the

phase information in the Bessel function must be included in kt. Consider

the integral solution givcn by Eq. '3.30). The Bessel function ma, be

replaced by its large argument, asymptotic expans on

J (z),. (2"a)-1/2 [e j .z--/4 ' + e - '.z/ 4)] (CzA

-4..[

AJ

A/
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Then Eq. (3.39) becomes

P = P R F(W) in-I (2'J ) -1/2
n 00o w o 2rr

x fitle -jkx 
cos+(r -r)sine]

-jktx cos+(rn +r)sinl (k sine) 1/2 d6

The integral is evaluated 
by the method of stationary phase. 

The two

terms in the integrand have different 
stationary points en1 and 

8n29

respectively, given by

r - r r

tan n R tane --tnnl - x

r + r r
n----= tane + -

tanen n x

The result for the pressure is

jn-I -1/2

P P R F(w)I rn 00o

r 1/2 -jkR j(inen2 (3.44)

R I e + JsRn2

where

+os (r -0)n.
n '(x cOSn + (r sin0nl)

Rn2  
n cOSOn2 + (rn+r) 51n2)

-- Al
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The RHS of Eq. (3.44) represents a sum of pre-focus and post-focus waves

(see Fig. 3.4). The focusing factor (jk)112 found in Eq. (3.43) is not

present in the off-axis solution. Instead there is an amplitude depend-
-1/2

ence of r

For small values of r/x and r/r , it can be seen thatn

tanOnl tanO n2tane and, furthermore, that Rnl=Rn2 Rn. Under such condi-

tions Eq. (3.44) may be rewritten in the form

= P R F(W) n-I rrn )-1/2 sine [ek(R nR) + e

(3.45)

Rnn

rn(r, x)

n2 0
l~

rnr

FIGURE 3.4
OFF- AXIS GEOMETRY

44 I
k7?
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Now let us determine the importance of the fact that k is

complex. The main effect of Im[k] is to produce attenuation of the waves

as they travel along their respective rays. For waves traveling away from

the source, the complex wave number may be expressed thus:

k = w/c - ja(w) = (w/c)(l-jc C/W) (3.46)

where use has been made of the fact that the phase velocity is very nearly

equal to c for f << 100 MHz. The absorption coefficient a(w) includes0

the effects of viscosity, heat conduction, and molecular relaxation. For

the frequencies of interest, a(w)<<w/c . Equation (3.46) is now introduced

into Eq. (3.43). The complete expression for k as given above is sub-

stituted directly into the phase delay term exp(-jkR n). The two factors

exp(-jwR n/c o) and exp(-aR n) thus obtained represent phase delay and

attenuation, respectively, over the path length R . Since lmfk]<<Re[kl we
n

neglect Im[k] in the argument of the Bessel function.

Next consider the dependence of kl/ 2F(w) on a(w):

kl2 ~w =(1/2 1[~)I1i vj~ C cI(W))1/2

1/2 0

0

a[N(t)] J121-- +  + "".

where terms of greater than first order in c 0 /w and vw/c 20 have been

neglected inside the brackets. For f < 1 MHz only the first term in the

brackets is appreciable. The following substitution is therefore made

in Eq. (3.43):

1WIT
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Sk1 / 2 F(w) = (W/c)1/2 :[N(t)] (f < I MHz)

The general solution for the pressure field now assumes the form

P(r,x,w) = Pd + P n (3.47a)
n=1

where
P R

Pd = R 0[N(t)] ejkR 9 (3.47b)

P C-- !)nR- 1/ / 2 sin J - jkRPn =PRo in2 1 sinn o0 r sinn )SIN(t)) e

(3.47c)
and k is given by Eq. (3.46).

The approximate frequency domain solution given by Eqs. (3.47)

is valid under the assumptions that jkaj>>l and f < 1 MHz. For our tube

(a = 2.54 cm) these conditions are roughly equivalent to

2 x 104 < f < 106 Hz. The solution is valid for any signal, broadband or

pure tone, whose spectrum falls principally in this frequency range.

F. Inverse Fourier Transform w-t: Analytical Evaluation

Under certain conditions the inverse Fourier transform of

Eqs. (3.47) can be calculated analytically. The inversion formula is

p(rxt) T P(r,x,W) ej~ dw (3.48)

As a first approximation to the measurement conditions it is assumed that

the medium is lossless [c(w)=O] and the microphone is an ideal point

receiver (microphone radius-+O). The pressure signal pd corresponding to

IL i ' ...
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the direct wave is readily obtained. Substitution of Eq. (3.47b) into

Eq. (3.48) yields

PR
Pd(rxt) f 00-N(t-R/c ) (3.49)

a result that is valid both on and off the axis. Calculation of the

reflected signals pn is somewhat more difficult. First, the pulse wave-

forms that would be measured by a point receiver on the axis (i.e., at a

focus) are computed; then the results are compared with computed off-axis

waveforms.

We wish to find the on-axis time waveform for the nth reflected

wave by evaluating the inverse Fourier transform of Eq. (3.47c) for r=0.

Setting r=0 and rearranging terms, we can write Eq. (3.47c) in the form

/ -JwR /c
< 1/2 jn-i 1/2 - n R oPn = P oR  sinen (2/coRn n (/jW) 1  jw :[N(t)] e

(3.50)
We first proceed to find the inverse transform of

.n-l ( 1/jw)1/2 jw J[N(t)]

as a function of t, and then note that if we include the factor
exp(-JwRn/co), the result is unchanged except for a time shift t-*t-Rn /cot'

(t' is the retarded time).

n-INotice that the phase shift factor j is real for odd n and

imaginary for even n. In particular,

n-i -1)/2(-l) , n odd

jni = J(l)(n-2)/2  n even

.. . . .. . . . .. . . . ..........--..........-
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Moreover, in order for p (n even) to be a real function of time, the 900

phase shift j must be interpreted as +j for positive frequencies and as

-j for negative frequencies, or vice versa (this fact is proved in Appen-

dix A). In other words, let

j j sgn(w)

where

i~ , >

sgn(w) - 0 , w 0

, 0<

Now consider the function

S (W) = n (Tr/jw) 1 / 2 jw [N(t) 1 (3.51)
n

It is convenient to write the inverse Fourier transform of G (w) as a

convolution of time functions. The following transform pairs are used:

(r/j) -1/2 t-1/2

jm wI[N (t)] I- N' (t)

j sgn(w) -+(t)

For odd values of n Eq. (3.51) takes the form

G () = (-l) (n-l)/2(/jw) /2jw[N(t)]
n

whose inverse Fourier transform is given in integral form by

-lGn()] ()(n - l)/2 (t-T) - /2 N' d . (3.52)
[C (w)J I N'CO
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If we introduce the dimensionless times *it/T and T'=T/To, where T is a

characteristic time, then Eq. (3.52) becomes

_- [G (w)] (-1)(n-l)/2 T-1/2 A (n odd) (3.53a)

where

A 0) f d' (3.53b)

For even values of n Eq. (3.51) takes the form

Gn (w) = (-l)(n -2)/2 j sgn(w) (/jw)1/2 jw[N(t)] (3.53c)

and its inverse transform is

a[G (Ml) = (-i)n/2 To1 / 2 A2(4) (n even) , (3.54a)
n o 2

where

1 A 1( )

A 2(1) 1 T- I dT' (3.54b)

Finally, we use the time shift property of the Fourier transform

[A(t)] e n/o- A(t-Rn/c o )

where A is an arbitrary function, to obtain the on-axis pressure

( 1/2 ( -)/2

Pn0x\lPoo2/oon 2ie (- )12AI( ) (n odd) (3.55a)

Pn(O,x,t) PoRo 2/oToRn  sinen (-1) A2() (n even)

(3.55b)

where now $ denotes the dimensionless retarded time

4=t'/T . (3.55c)4Ao
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Up to this point the two functions AI and A2 are perfectly

general, since N(t) has not yet been defined. Regardless of the waveform,

it may be observed that (1) the amplitude depends on R-1/2 sinn , which
n n

is a function of the tube radius and the receiver location, and (2) there

is a 1800 phase shift every time n changes by 2. The 900 phase shift

between consecutive arrivals, given in the frequency domain as j sgn(w),

is manifested in the time domain as a convolution with -1/TT o [see

Eq. (3.54b)].

To illustrate the changes in shape and amplitude suffered by a

small-signal N wave, we evaluate pn for the ideal N wave function

N(t) = -(t/To) rect[t/2T ] (3.56)

where T is the half-duration and
0

I , Itl < T

rect[t/2T ] E 0 Itl > T

1/2 T

In terms of the retarded time 4, N is given by

N() = -4 rect[/21 (3.57)

and the derivative of N by

- -rect [(4-i)/2] + 6(0-1) + 6(0+1) . (3.58)
T0

Because N() is discontinuous at 0=±l, each of the integrals defining

A 1 and A2 must be evaluated over the three regions 0<-i, -1<0<1, and 0>1.

Substituting Eq. (3.58) into Eqs. (3.53b) and (3.54b), we obtain
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o (0 , < -

Ai " 0() =  0+1)-1/2 _ 2(0+1) 112  -i<  < 
I

(0-1)-l/2 + (0+1)- 1/2 + 2(0-1)1/2 -2(1) , 1/ >1

' (0.59a)

an1/2 1/2 1 /2  1/ 2

2 -0 - 2(1-0)1 -1 < < 1

0 >1

(3.59b)

The solution for the pressure signal pn(0,x,t) is given by Eqs. (3.55)

and (3.59).

Pressure waveforms corresponding to the first four reflected pulses

in the short tube (x = 0.074 m) are plotted in Fig. 3.5. The direct arrival

is an ideal N wave whose half-duration is 4.0 usec and whose peak pressure

amplitude is P at the receiver (for simplicity we have chosen R =x). The0 0

amplitudes of the computed waveforms have been normalized with respect

to P . It is immediately apparent that the focusing process produces0

waveforms differing considerably in shape and amplitude from the direct

N wave. First of all, in each reflected wave the amplitude is infinite

at 0=±l. We should expect the pressure to be limited in a real medium

by finite amplitude effects and absorption. Because for our particular

1/2geometry the amplitude factor sine /R varies little over the range
n n

1 < n < 4 , the amplitudes of the four pulses are nearly the same. Finally,

it is most interesting to observe that each pulse has either a precursor

I

--.--



66

0a

uJ

A. LA

0

-J D

U.Lf

U..
L-J

TRIU
ASO1 5
R .a

99

- --- -A .-- U-



67

or a tail. Nonzero pressure is predicted for either 0<-l or 0>I, depending

on n. Even-numbered waveforms have precursors and odd-numbered waveforms

have tails. It will presently be shown that at off-axis receiver positions

every pulse has a precursor and a tail.

The off-axis solution given by Eq. (3.45) is a good approximation

if kr sine >> 1. Let us now calculate the inverse transform of Eq. (3.45).n

We observe that the signal at (r,x) is composed of an incoming wave, which

crosses the axis at some position x in>x, and an outgoing wave, which

has already passed through a focus at xout <X. Consider the wave corre-

sponding to n=l. The incoming signal is an N wave, and the outgoing signal

is shifted by 7/2 radians. Recall that a phase shift of ir/2 corresponds

to convolution with -1/nt. If the time dependence of the incoming signal

is

N(O) = €rect[ /2]

then the outgoing signal is proportional to

N -lT ) -I f N(T) d-r

• - o +n11 2) (3.60)

where [N /2]=j 4[N]. Now consider the off-axis waveforms associated with

the signal identified by n=2. An observer sees a pre-focus wave propor-

tional to N followed by a post-focus wave proportional to N , i.e., an
iT/2 i

inverted N wave. Similar arguments may be advanced to determine the wave-

forms for each pair of ray paths corresponding to the general index n.

The effect of a pure phase lag on an ideal N waveform is

illustrated in Fig. 3.6 for phase lags equal to integer multiples of g/4.

'____ _
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The odd multiples are included for comparison with the on-axis waveforms

(see Fig. 3.5). Noting that

exp(j7r/4) 3[N] = 2 -12(1 +j) 9[N] = 2 -12a[N +N 7r2

one sees that waveforms computed for the odd multiples of 7r/4 are just

scaled superpositions of N and N I/'In every case both precursor and

tail exist and are symmetric about the origin. Although the figure may

seem to indicate otherwise, the amplitude is infinite at 0=±l. There are,

however, no jump discontinuities like those present in the on-axis wave-

forms; the signal increases (or decreases) smoothly to -(or

It is not really appropriate to compare the measured waveforms

presented in Fig. 2.5 with the waveforms predicted here. Recall that

in the interest of simplicity medium losses were neglected and the

microphone was assumed to be a point receiver. Furthermore, the direct

signal was taken to be an ideal N wave, small enough in amplitude that

nonlinear distortion could be neglected throughout the tube. In the fol-

lowing section, atmospheric absorption and microphone directivity are

included in a computer routine developed to calculate more realistic

waveforms.

G. Inverse Fourier Transform w-t: Digital Evaluation

In this section, a computer routine is developed which, given

the asymptotic solution in the frequency domain, Eqs. (3.47), enables

one to calculate and plot the reflected waves for an arbitrary direct

.M ~ waveform. tThe effects of atmospheric absorption and microphone

t The direct waveform cannot be completely arbitrary. It must still

satisfy the limitations on ka which were noted at the beginning of the
previous section.

-Auk - -
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directivity are included in the calculation. Results for both ideal and

measured direct N wave inputs are presented in Chapter IV.

1. Receiver of Finite Dimensions. Let us consider what happens to

the observed waveforms when the receiver is a baffled piston of finite

size (recall that our microphone is baffled to avoid the problem of dif-

froction from the edge of the housing; see Section A.3, Chapter II).

A pressure front incident on the face of the microphone at an angle e>0

takes a short time to traverse the active area. The instantaneous output

of the microphone is proportional to the integral of the instantaneous

pressure over the entire active area. Calculation of this integral in the

time domain is entirely equivalent to calculation of the frequency direc-

tivity characteristic in the frequency domain. We pursue the latter

course for the case in which the pressure field is symmetric about the

axis of the piston.

An axisymmetric pressure field incident on the microphone face

at angle e referred to the axis may be expressed in the form

P(r,x,w) = P J (kr sine) ejkx cose (3.61)

The voltage output of the transducer is proportional to the average

pressure P on the face, which is, for a microphone of radius a,

P fa P(r,O,w)27rr dr2Jo 0

2J (kosinO)
= ka sine- P D(e) (3.62)

Thus, it turns out that the directivity function D(O) is the same as that of a

piston in a plane wave field.

AA
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Now the axisymmetric reflected wave field described by

Eq. (3.47c) is of the form postulated in Eq. (3.61). Integrating

Eq. (3.47c) with respect to r, one may conclude that if a baffled micro-

phone of radius a is used to sense the pressure on the axis of the tube,

the pressure response P to the nth reflected pulse wiL be

12 1n- 12 -jkRP n(Ox,) = P R 0[N(t)] (2nj) /  n (kR)-  (2/a) JI(kosinen) e

= P (Oxw) D(O n) , (3.63)

where P and D(O) are given by Eqs. (3.47c) and (3.62), respectively.n

This exceedingly simple result suggests that one may account for the fi-

nite size of the microphone by multiplying the on-axis, frequency domain

solution by the microphone directivity factor D(O n). If the microphone

is not centered on the axis, D0) must be expressed as a sum of higher

order Bessel functions, and the result for the pressure is not so simple.

2. Atmospheric Absorption. The effects of absorption and

dispersion on the propagating signal were introduced in Section E. There

it was argued that the complex wavu number k could be written

k = (w/c ) - ja(w) , (3.64)

where absorption a includes relaxation as well as thermoviscous

effects. Recently, the American National Standards Institute (ANSI)

published a "Standard Method for the Calculation of the Absorption of

Sound by the Atmosphere" (Ref. B.1), by which one can compute cL for given

frequency, ambient temperature, ambient pressure, and relative humidity.

A digital implementation of the method is stored in the user library at

.1I
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Applied Research Laboratories, The University of Texas at Austin, under

the function name ABSORP.

Extensive experimental and theoretical documentation pertaining 4

to the atmospheric absorption of small-signal N waves is presented in

Appendix B. There a digital method is developed which allows one to com-

pute the attenuation of broadband signals according to the ANSI absorption.

Comparison of computed and measured N waveforms reveals excellent agree-

ment for the range of travel path lengths R encountered in the tube exper-n

iment. Appendix B also includes an analytical approximation for a, valid

at very high frequencies, and an analytical solution for an attenuated

ideal N waveform based on that approximation. It was hoped that a method

similar to that used in Appendix B could be incorporated into the analysis

for focused, ideal N waves advanced in Section F of this chapter, but when

a straightforward approach failed, this method of attack was shelved.

3. Program NTUBE. The computer program NTUBE computes waveforms

detected by a piston microphone centered on the axis of the tube. The

effects of both atmospheric absorption and microphone directivity are

included in the program. A simplified flow chart for the program is shown

in Fig. 3.7. The input is the direct time waveform Pd(t') received at

position x. First the FFT of the input waveform is calculated in order

to obtain a frequency domain representatition of the signal Pd(fi), where

f is the ith frequency component. Next P nx,fi) is computed according to
iq n

0 Eqs. (3.62) and (3.4/c): The phase of Pd (x,fi) is shifted by

(n/2 + 1/4)7 sgn(fi); then the focusing factor kI /2 and the microphone

directivity and atmospheric absorption factors are computed for each f

and multiplied by Pd(X,fi) (absorption is applied over the difference in

gill&
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distance traveled by th, direct an(' reflected waves). The inverse FFT of

the resulting signal is computed and multiplied by a frequency-independent

amplitude factor to yield the time waveform of the nth pulse. Finally

the subroutine PLTWAVE is called to plot the waveform.

The program has been used for ideal as well as measured N wave
±

inputs, elthough it is applicable to other pulse inputs as well. The

absorption and micropaone directivity subroutines are optional so that

the digital and analytical solutions for an ideal N wave can be compared

under "ideal" propagation and measurement conditions [a(w)=O, D(O )=l].

Gibbs' phenomenon (see Ref. 41, pp. 745-748) was evident near the

discontinuities of computed ideal waveforms. Its amplitude of oscillation

was objectionably large, presumably because of the presence of the

1/2
frequency-dependent gain factor kI . The oscillations were damped by the

time domain filter that precedes the plotting routine. Use of the filter

is also optional.

All of the programming was done in FORTRAN on a CDC Cyber Series

170 computer. Listings for Program NTUBE, Subroutine PLTWAVE, and Func-

tion ABSORP (which calcul'tes atmospheric absorption at each frequency f

are provided in Appendix C. Results for ideal and measured input N waves

are presented in the following chapter.

~t

I

tNote that each reflected wave is computed independently; i.e., no attempt

is made to superpose several appropriately delayed pulses.

I7
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CHAPTER IV

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS:

SMALL-SIGNAL WAVES

The computer program NTUBE was used to calculate reflected

pulse waveforms. In this chapter results of the calculations are compared

with waveforms measured in the tube. First, however, the effects of

microphone directivity and atmospheric absorption on ideal waveforms are

investigated in order that the relative effect of each on the measured

waveforms may be assessed. Then a measured direct N wave is used as an

input in waveform computations for the first four reflections in the

short tube; atmospheric absorption and microphone directivity are included

in the calculations. Measured and predicted wave shapes are in agreement,

but the amplitudes of the measured waves are consistently lower than those

of the computed waves.

Next, the long time behavior of the mathematical solution is

analyzed by computing the "amplitude envelope" discussed in Chapter II.

The peak-to-peak pressures of measured and computed pulse waveforms are

plotted versus reflection number n for propagation in the long tube. The

amplitude di.crepancy observed in the comparison of the first four

measured and computed waveforms persists throughout the range of n con-

sidered (n=1-35). It is postulated that the disparity is due to misalign-

ment of the apparatus, boundary layer losses (which have been neglected in

the analysis), nonlinear propagation distortion, or to a combination of

all three. Quantitative evidence is given in this chapter that suggests

75
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(1) that a very slight misalignment can cause a discrepancy of the same

order as is observed, and (2) that by neglecting boundary layer losses,

we probably underestimate total absorption. Discussion of nonlinear dis-

tortion is delayed until Chapter V.

Finally, a sample off-axis waveform is presented. Pulses

corresponding to pre-focus and post-focus waves are observed.

A. Influence of Absorption and Microphone Directivity on the Pulse
Waveforms

The results described in this section include computations of

the first four ideal waveforms for cases in which the atmospheric absorp-

tion and microphone directivity are significant. Program NTUBE is used

to carry out the computations, and the direct signal is an ideal N wave.

To begin, however, the relative importance of boundary layer and main-

stream absorption effects are briefly discussed.

After giving much thought to the problem of how to include

boundary layer absorption in our theory, we decided to dispense with it

altogether and include only mainstream absorption. Consider the magni-

tudes of the plane wave boundary layer absorption aBL and the mainstream

absorption aMS (which includes both thermoviscous and relaxation absorp-

tion) for frequencies between 10 kHz and 1 MHz. Weston4 3 gives solutions

of the full Kirchhoff dispersion relation for "narrow", "wide", and

"very wide" tubes and for the "transition" regions in between. The

sound attenuation in a majority of practical duct acoustics problems is

governed by the "wide tube" formula (given first by Kirchhoff)

nBL = [1 i(a)-i(vw/2)i/2 (4.1)aSBL [I + (J-l)/1Pc~r] ac° )1v/ 41



77

39
The restrictions on Eq. (4.1) are given by Blackstock in terms of the

boundary layer thickness 6=(2v/w)1/2,

C
<-- 6< ja < < _c

c~ ca 0 (4.2)
c c 6W
0 0

The meaning of the inequality is that the radius of the tube must be large

enough that the boundary layer thickness is a small fraction of the tube

radius but the boundary layer absorption is much larger than mainstream

absorption. For the present problem a = 2.54 cm and v = 1.5x 10- 5 m 2/sec;

the "wide tube" formula is thus valid for frequencies f such that

7.6 x 10- 3 Hz << f << 144 kHz . (4.3)

The frequencies of interest lie between 10 kHz and I MHz. Evidently, the

"wide tube" formula is not applicable here.

Our particular problem is best served by Weston's result for

attenuation in the "transition" region between the "wide tube" and the

"very wide tube",

+
anMS+cIBL+nBL ' (4.4)

where

aB -- (4.5)/ \2/ 23

BL Pr 2c 3

0

+
The term aBL arises because the fluid is bounded, but it is not clear how

+
UBL is associated with the boundary layer. Actually, Weston's result is

valid for a nonrelaxing thermoviscous fluid (i.e., aMS is the mainstream

thermoviscous absorption only). We assume that relaxation absorption does

M,
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not depend on the presence of a boundary and, hence, that it may be added

to the classical thermoviscous absorption to yield the total mainstream

absorption S The three terms S BL, and a+ are evaluated for three
s NS +

frequencies in Table IV.l. The terms aBL and a BL are computed from

Eqs. (4.1) and (4.5), respectively, and the values of aMS are obtained

from Program ABSORP (see also Fig. B.1, Appendix B). The atmospheric con-

ditions are typical conditions for our laboratory: T-25 0C, RH-48%, and

Po = 1.0 atm. For the lowest frequencies aBL is the largest of the three

terms, and between 100 kHz and 1 MHz aMS is the most significant term.
+

The extra absorption aBL is significant only in the higher decade.

TABLE IV.i

CONTRIBUTIONS (Np/m) TO PLANE WAVE
ABSORPTION IN "TRANSITIONAL" TUBE

+

f(Hz) MS nBL nBL

104 1.45 x 10- 2  1.17 x 10-1 8.06 x 10 - 4

5 -1 -1 -2
10 4.67 x 10 3.74 x 10 8.06 x 10

106 18.9 1.17 8.06

Equation (4.4) is valid only for the propagation of plane waves

in the tube. We have not been able to extend it to explain the attenua-

tion of higher order modes propagating in the same tube. It seems plausi-

ble, however, that the boundary layer absorption terms are collectively

of the same order of magnitude as the mainstream absorption, at least for

• 1 l I Ii" ' l I 1 I " .. ... . '" - .- , . ..
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the first few modes. Boundary layer effects are neglected in the present

analysis. As a result the total attenuation of the pulse train is

undoubtedly underestimated.

The effects of atmospheric absorption and microphone directivity

on computed waveforms were investigated independently to give some indica-

tion of the importance of each in the measured waveforms. The direct

signal, an ideal N wave with half-duration T = 4.0 .sec, was digitized at0

the rate of 4 points/psec over the interval -2.5:0 <2.5. The program

NTUBE was used to compute the first four reflected pulses in the short

tube for the following three cases: (1) lossless medium, point receiver

[a(w)=O, D( n)=l]; (2) atmospheric absorption, point receiver (a(w) given

by ABSORP, D( n)=l; (3) lossless medium, finite piston receiver

[a(M)0, D( n) given by Eq. (3.62)]. Typical measured values were chosen

for the relative humidity RH, temperature T, and ambient pressure pot

and the receiver radius a was chosen to equal the radius of the active

area of our microphone. Waveforms computed for a = 1.0 mm, RH=50%,

T=25*C, and Po 1.0 atm are presented in Fig. 4.1. The amplitude of Gibbs'

oscillations have been reduced by means of the time-domain filter routine.

The results for case (1) were, except for the presence of some residual

Gibbs' oscillations, precisely the same as those plotted directly from the

analytical solution (see Fig. 3.5). Hence the analytical results are

repeated in the first column of Fig. 4.1.

In Fig. 4.1 one may observe that microphone directivity produces

a much more noticeable change in the waveform than does atmospheric absorp-

tion. Because later arriving reflections impinge on the microphone at

more oblique angles, the distortion due to directivity increases with n.

I.,
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Total atmospheric absorption likewise increases with n because higher

order reflected waves travel greater distances. However, for our speci-

fied conditions of humidity, temperature, microphone size, and for our

particular tube geometry, microphone directivity is more important than

absorption for the first four reflected pulses.t

B. Computer Solution For a Nonideal Input Waveform

We are now ready to present theoretical results that may be

directly compared to the measured waveforms shown in Fig. 2.5. The

"average" direct N waveform measured in the short tube (spark energy

0.04 J) was digitized at a rate of 2 points/psec by the digital oscillo-

scope. Waveforms for the first four reflected pulses were computed by

means of Program NTUBE. The effects of atmospheric absorption and micro-

phone directivity were included in the computations. The geometric and

atmospheric parameters were assigned their measured values: RH=48%,

T=250 C, p 1.0 atm, x = 0.074 m, a = 0.0254 m, and a = 1.0 mm. Computed

waveforms are shown along with corresponding measured waveforms in

Fig. 4.2 (the measured waveforms are from Fig. 2.5). The basic shapes of

the two sets of waveforms are similar: corresponding peaks and zero cross-

ings are located at nearly the same points in time. In general, however,

the peak amplitudes of the measured pulses are less than those of their

computed counterparts. It is surmised that the discrepancy has three

possible causes: (1) our neglect of possibly significant boundary layer

tThis result is not surprising when one realizes that for a large part of

our frequency range, a 1 mm radius piston is not an omnidirectional
receiver. For example, the 3 dB beamwidth is 620 at 100 kHz and 50 at
1 MHz, and in the short tube the angles e1 4 are 340, 540, 640, and 70,
respectively.
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losses, (2) apparatus misalignment, which tends to defocus the waves,

(3) nonlinear propagation distortion, which causes excess attenuation of

the waveforms (over and above geometric spreading and atmospheric absorp-

-ttion). The first possible cause has been explored already. We were

unable to come up with a quantitative estimate of the error introduced

by neglecting boundary layer absorption. The latter two possibilities

are discussed in the present and subsequent chapters.

Let us for the moment argue that the difference in amplitude

between measured and computed waveforms is primarily due to inaccurate

placement of the microphone. We have observed experimentally that moving

the microphone off axis by as little as 0.25 smm can grossly affect the

measurements. Our argument is given further support by the fact that the

best agreement between measurements and theory is found for the case n=l.

The first reflected wave is reflected from the tube wall only once and

focused only once (at the microphone). It is much easier to accurately

align a simple source-mirror-receiver system than to align a system in

which the wave undergoes several reflections. The special short tube

alignment procedure described in Chapter 11 was designed to minimize

misalignment error, but apparently its use met only limited success.

It has been found that experimental error may also be introduced

by imperfections in the interior surface of the tube. The misfit at the

tube/microphone junction was varied, and a positive correlation was

noticed between increasing misfit and waveform degradation. When care was

t In Chapter II it was determined from experimental data that finite

t amplitude effects are negligible for a spark energy of 0.04 J. This
Iconclusion was based on the fact that wave 'shapes were the same for

spark energies of 0.04 J and lower. The dependence of pulse amplitude
on spark energy has not been investigated.
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taken to ensure the smoothest surface possible, the misfit was less than

0.1 mm; still, its effect may be manifested as aberrations of the focused

waves.

C. Amplitude Envelope

We can gain some insight into the long-time pressure behavior

by considering the amplitude envelope of the pulse train measured in the

long tube. By "amplitude envelope" we mean a curve connecting the points

on a plot of peak-to-peak (p-p) pressure amplitudes. Because alternate

pulses differ in phase by 1800, their shapes are similar but inverted.

Either of the envelopes constructed from the odd or even numbered pulses

gives an excellent indication of the long time pulse amplitude behavior,

without introducing undesired phase information. The two envelopes are

displaced f~rom, but are essentially parallel to, each other.

Measured and computed p-p amplitudes are plotted versus odd

values of n in Fig. 4.3. The measured values were taken from a pulse

train similar to the one pictured in Fig. 1.2(a). The solid curve was

computed by repeated application of NTUBE with x = 0.762 m (long tube).

The spark energy for this run was 0.16 J3, and the atmospheric conditions

were the sar. as those noted in Section B. The direct N wave had a half-

duration of 5 iisec and a peak pressure equal to 1.3 mbar.

The overall amplitude of the computed envelope is considerably

larger than the amplitude of the measured envelope; however, the percent

difference between the computed and measured data sets is not constant with

respect to n. Variation between the two data sets may be shown more

clearly if the computed curve is multiplied by a constant K<l. The value

of K that yields the best fit of the computed curve to the measured data
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points (n-i to 35, odd) is 0.587. The best-fit curve is given by the product

of K and the computed curve, and is denoted in the figure by the dashed

line. Comparison of the best-fit curve and the measured data reveals

that the measured amplitude falls off with n more rapidly than does the

computed amplitude.

In the previous section it was asserted that disagreement

between measured and computed amplitudes is due, at least in part, to mis-

alignment of the experimental apparatus. We are now in a position to

estimate the microphone offset distance r from measurements of the ampli-

tude envelope. Our estimate is based on the frequency domain pressure

solution, Eq. (3.34), evaluated at the peak frequency w of the direct
P

wave spectrum. Now the largest peak in the spectrum 15 [N(t)]I of an

ideal N wave is located at the frequency wp=2.1/T (see Appendix B, Sec-

tion 1). To a rough approximation, the same is true for a real N wave.

Let us assume that the amplitude of each reflected pulse is proportional

to the amplitude of its largest spectral component.t Substituting the

measured values of the p-p pressure into the LHS of Eq. (3.47c) and let-

ting w-up and R-x-R in the RHS, one may find the radial receiver displace-

ment r-r(n) that could cause the observed reduction in measured amplitude.
Because the microphone directivity factor D( n ) is valid

only for a transducer centered on the axis, it must be assumed that the

tThis assumption is not as rash as it may at first seem. The spectrum of
an ideal N wave falls off at 6 dB/octave on either side of wp. The

reflected wave spectra are similar in shape to the spectrum of the direct
N wave. For D(0n,u)=l, w /7<w<7wp, and a(w)Rn<<l, the amplitude of Pn
is nearly independent of frequency. The pu se amplitude is then roughly
proportional to the spectrum amplitude at w p.

-~ -. P
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receiver is omnidirectional, i.e., that D(6 )-l. The general effect of

the finite size of a microphone (located at any radial position) on a

received waveform is one of attenuation. Since the measurements were

performed with a microphone of finite size, the measured amplitudes are

less than the actual ones; the estimated values of r(n) are therefore too

large. Furthermore, sine is nearly constant for large n (the rate at
n

which sine aporoaches I depends on the tube geometry), and it follows

that D(6O ) tends to a constant as n-. Hence, for n large enough that

!sine n=1 , we should expect to find that r~n) approaches a constant value r,

which is somewhat greater than the actual displacement of the microphone.

Estimated values of r(n) (n odd) have been calculated from the

measured p-p amplitudes and Eq. (3.47c) for an ideal N wave whose half-

duration is 5 iisec and whose spectral peak therefore falls at

f p= w p/2nr = 67 kHz. Atmospheric absorption at 67 kHz is 0.306 Np/rn.

The results are presented in Fig. 4.4. For n> 15 (6 n>4<0), the constancy

of r(n) is quite remarkable, in light of the numerous approximations made

in the above analysis and the considerable possibility for experimental

error. From the curve it is estimated that an upper bound of the system

* misalignment is given by r =1.5 mm.

D. 0ff-Axis Measurements

An investigation of off-axis signals yields results which both

A support our ray theory solution and provide physical insight into the

problem of misalignment. On-axis and off-axis waveforms measured in the

short tube are pictured in Fig. 4.5. The axial distance (x 0.074 m)

t and spark energy (0.06 J) were the same in each case.

*1&
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1 The figure shows how incoming and outgoing waves are combined at

a focus. It also permits identification of the phase of each component

vave. The off-axis waveform is described by Eq. (3.45): the incoming

and outgoing signals for n-i are shifted 0* and 90% respectively, with

respect to the direct wave. Those for n-2 are shifted by 90* and 180%

and so on, for each n. The shapes are in qualitative agreement with what

one would expect from the shapes shown in Fig. 3.2.

E. Summary

In this chaepter waveforms computed from the theoretical results

have been compared with measured waveforms. The measured wave shapes have '
been accurately predicted, but the amplitudes have been overestimated by

approximately 40%. Three possible explanations for the error have been

suggested: neglect of boundary layer effects; misalignment of the

experimental apparatus, which results in the measurement of incompletely

focused waves; and nonlinear propagation distortion, which causes the

sound wave to suffer excess attenuation. Boundary layer absorption has

been discuesed in some detail, and a quantitative estimate of the degree

of misalignment has been given. Nonlinear distortion is discussed in the

following chiapter.



CHAPTER V

PROPAGATION OF FINITE AMPLITUDE WAVES IN THE TUBE

In the preceding chapters an investigation of the propagation

of small-signal waves in a cylindrical tube was described. The spark

energy was kept below 0.2 J. In this chapter results are presented which

suggest that finite- amplitude effects may be important for higher spark

energies. The shapes of the individual waveforms in the pulse train

change dramatically as the spark energy is increased from 0.04 J to 2.3 J.

The experimental results are investigated by means of a numerical

ray tracing algorithm. The algorithm is synthesized from basic tenets of

nonlinear acoustics and from results described in the previous chapters

for propagation of small-signal waves in the tube. Because of time con-

straints the algorithm has not yet been implemented as a computer program.

It is regrettable that no quantitative results can be given. However,

qualitative results indicate that a solution of this type may adequately

account for the observed change in pulse shape.

A. Measurements

Waveforms were recorded on the axis of the long tube for seven

spark energies between 0.04 J and 2.28 J. The spark energy was increased

by adjusting the length of the electrode gap; the longest gap, which

corresponded to the highest energy, was approximately 2 mm. The experi-

mental apparatus was unchanged from that used to make the low amplitude

measurements. It was not possible to measure finite amplitude waves in

the short tube because the microphone was overloaded by the extremely

high pressures encountered close to the source.

91
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Measured waveforms are presented in Fig. 5.1. Two preliminary

observations are in order. First, the direct N wave, identified by the

letter "D" in oscillograms (a)-(d), is in all cases at least partially

obscured by the first reflected wave. As the spark energy is increased,

the time lag between the direct and first reflected arrivals is diminished.
*

The direct wave is not at all visible in oscillograms (e)-(g), which cor-

respond to the highest spark energies. The amplitude of the first

reflected wave is evidently large enough over at least part of its travel

path to form a shock front capable of overtaking the direct wave. In a

similar manner the second reflected pulse, which is larger in amplitude

than the direct wave and the first reflected wave, overtakes them both

when the source energy is large enough [e.g., 2.28 J, (g)]. Second, pulse

duration increases with increasing source amplitude. This is to be ex-

pected because the length of the N wave, which forms the basis for each

train of pulses, increases with spark energy (see Wright, Ref. 20).

The main conclusion to be drawn from Fig. 5.1 is that the

apparent phase shift is amplitude dependent. As the source amplitude is

increased, the shape of each pulse changes; yet for large n there appears

to be a constant 900 phase shift between pulses. The shape is stable for

spark energies less than about 0.04 J (as noted in Chapter II), but at

higher energies the phase advances so that the nth high amplitude pulse

,1 has the same basic shape as the (n-l)th low amplitude pulse. Consider,

for instance, pulse No. 8. As the spark energy is increased, the waveform

gradually departs from its initial shape (a8). In (d) the shape more

*] nearly resembles (a7). Moreover, the departure from shape (aS) continues

to increase with spark energy so that in (g) pulse No. 8 resembles (a6),

C-1
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a U-shaped wave. Similar progressions can easily be seen for all pulses

arriving more than 100 iisec after the direct wave (unfortunately, at

earlier times, overlapping of the pulses obscures the evidence). It is

postulated that the reduction of phase shift is induced by nonlinear prop-

agation distortion. In the following sections a numerical model is devel-

oped with which to test this hypothesis.

B. A General Propagation Algorithm

As a wave front propagates-down the tube, it alternately

converges and diverges in the radial direction. The wave amplitude there-

fore alternately increases and decreases along a ray. Because nonlinear

propagation distortion increases with amplitude, the rate of distortion

increases with distance for a converging wave and likewise decreases for a

diverging wave. Approximate analytical solutions of the nonlinear wave

equation are known for spherical and cylindrical waves, but none are

applicable to the present problem. Numerical solutions have proven useful

under circumstances similar to ours. In this section we discuss a general

form of an algorithm developed by Anderson 30to model free propagation of

finite amplitude spherical waves in a lossy medium. It is shown that one

may apply Anderson's algorithm to finite amplitude waves with arbitrary

space and time dependence, given the geometric spreading factor for inf in-

itesimal waves and the time dependence at some reference position.

Let us first define what is meant by "nonlinear propagation

J distortion," a term that has been used rather loosely up to this point.

Simply put, nonlinear propagation distortion of a wave is manifested as a

change in wave shape that arises because different points on a wave

I' i (called wavelets) travel with different velocities. A wavelet associated
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with a particle velocity u>O has a propagation speed greater than c (the
0

small-signal propagation speed), while a wavelet with particle velocity

u<O travels at a speed less than co . In a lossless gas, the total velocity

of a wavelet is

dR c + 8u (5.1)
tu = const o

where 6=(y+l)/ 2 . When the amplitude of the wave is infinitesimal, i.e.,

U peakO, all wavelets travel with approximately the same speed, and the

wave does not distort significantly. However, when the wave is of finite

amplitude (u peak>0), the difference in speed between wavelets causes the

wave to distort as it travels. The distortion is cumulative with distance.

Now consider the propagation of a finite amplitude wave from

position R to position R . Each wavelet may be identified by the time Do q

at which it leaves R ; at this time the associated particle velocity isO

u (P). The wavelet arrives at position R at time45

o q

t+f dR
R

0

Combining Eqs. (5.1) and (5.2), one obtains

R dR (5.3)

t = c + Pu

1 0

Let us consider only waves for which u<<c . The denominator of Eq. (5.3)
0

may then be expanded in a power series to yield an approximate expression

for the integrand. If terms of second order and higher in u are neg-

lected, the expression for t becomes

I 

L
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R
= -- 1 - dR (5.4)

R
0

or

R
tq

- -J u dR , (5.5)

o R

0

where t'=t-(R q-R )/c is the retarded time. Explicit solutions of

Eq. (5.5) may be readily obtained for plane (uu 0), cylindrical (uu 0UR_ /),

and spherical (umu R-1 ) waves.0

The use of an iterative algorithm permits evaluation of Eq. (5.5)

for a function . whose amplitude varies arbitrarily with distance, say,

u=u f(r). One can also include the effects of absorption in such an
0

algorithm. Absorption and geometric spreading are computed in the fre-

quency domain over a small step AR, and distortion is computed in the time

domain over the same step. First, the particle velocity of wavelet P is

specified at initial position R by u o(). Then tl.e FFT is used to obtain

U (w), the Fourier transform of u (f). Absorption and geometric spreading0 0

are applied over AR in order to find the particle velocity U1 (w) at

RI =R o+AR,

U ( f(RI)) e-a
U(w) f(Ro) 0

Finally, the inverse FFT is computed, and the arrival time t at point R1

is computed by means of Eq. (5.5). The step size AR is chosen small enough

that u(f) may be considered constant over the entire step; for the first

step, that constant is ul(D). Thus, we have

- ;~ .~ -S -



97

u- 2()AR/c2

1 0

For successive distances R =R +imR the attenuation and time shiftrn o

are computed from the following:

u( C) = u (O)f(R m)/f(R ) e (5.6a)S o m o

tu (O)AR/c2  (5.6b)

Since AR has been chosen small enough that urn may be considered constant,

and since u m<<c , it may be assumed that the linear plane wave impedance

relation p=p cou is valid. Hence, Eq. (5.6b) may be rewritten in the

form

tf a~Po0(O)f(R m)AR
t' = t -
m m-i 3 (5.7)oCo f(Ro )

0 00

Equations (5.6) and (5.7) describe the distortion suffered by a finite

amplitude wave as it propagates in a lossy medium. Absorption and geo-

metric spreading are computed in the frequency domain over the interval

(R ml,Rm), and distortion is computed in the time domain over the same

step. Then m is increased by one, and the absorption-distortion pair is

repeated. The iteration is repeated until m=q, i.e., until the wave

reaches the receiver.

tHere po(O) is the acoustic pressure at R and is not to be confused with

the ambient pressure.

7 -. .. .
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Equations (5.6) and (5.7) are valid as long as the waveform

remains single valued. Anderson asserts that atmospheric absorption is

sufficiently strong to keep the wave from becoming multivalued, and that

in practice we need only choose a step size small enough that distortion

does not cause the wave to become multivalued.

C. An Algorithm for the Propagation of Axisymmetric Waves in a Tube

Up to this point a general method has been described by which to

numerically model the propagation of finite amplitude waves in a lossy

medium. The algorithm is now specialized to the problem at hand. The

presence of the tube complicates matters in three respects. (1) A wave

propagating along one of the eigenrays (but not the direct ray) alternately

converges and diverges. In order to use the propagation algorithm we must

divide the travel path into sections on which the wave amplitude varies

monotonically. (2) As a wave passes through a focus, its shape changes

abruptly. It is assumed that the phase shift may be applied independently

from the distortion and absorption. (3) It must also be assumed that the

incoming and ,utgoing signals propagate independently of each other, i.e.,

that there is no standing wave nonlinear interaction. This algorithm may

therefore be better adapted for pulses, for which the overlap of incoming

and outgoing waves is quite limited, than for cw waves.

Between its emission by the source and its reception by the

microphone, a wave is reflected from the tube wall n times and focused on

the axis n times (the final focus occurs at the microphone). For purposes

of computation we subdivide the propagation path into segments bounded by

the points of reflection. On each segment the wave converges, focuses,

and diverges. For the ith segment the focus is chosen as the origin of

A"

i~d, ,,,' , . .- ,,r~'lll 
T

-- 1 ._' ,,,,'--- - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - .- - .- _-.. ..- - - -
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the coordinate system. The wave is computer propagated between 
the ith

and (i+l)th reflection points, through the ith focus; then the coordinate

origin is shifted to the (i+l)th focus and the process is repeated. The

coordinate system is pictured in Fig. 5.2 for i-i and n-2. The ith focus

Oi, is located a distance xi from the source, and the points at which

the wave reflects from the tube wall are labeled Ai, where i - 1, 2,

..., n. The wave converges as it travels along the ray segment AiOi, suf-

fers a 90* phase shift at Oi, and then diverges along AiAi+I. At any point

on Ai A i+ the wave appears to have originated at the ith ring image source
2 2)1/2

Si, whose radius is r. and whose distance from the focus is Ri=(xi+ r 1  .

Since rfi(i/n)rn and x =(i/n)x n, the triangles OS1 0 and OSn0n are similar

triangles, and 8i=nOn

The geometric spreading function f i(R) for propagation along the
n

ith segment of the nth eigenray may be derived in a readily usable form

from Eq. (3.44), which in terms of our new coordinate system may be

written

n-l JkR (si en1/2

P(r,x,w) P R F(w) eni-k /

00 ~r)(5.9)

jkr sinen12 -jkr sin8B
(R- r sinn )1 /2  (R + r sinO )1/

Recall that this equation describes the propagation of a small-signal wave

in a lossy medium from the nth ring image source S to the receiver, whichn
is situated at x . By replacing n with i we obtain an expression which

n

describes propagation between the ith ring source and the ith focus along

the nth elgenray,

Io
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-JkR i sinne 
JkR' [j ( kR

Pi(R',w) P R F(w) j e n e 1/2kR (5.10)

where R' = r sinen . The geometric spreading factor for propagation along

the nth eigenray is found by inspection from Eq. (5.10),

sin e
fi(R') = (incoming waves) (5.11a)n (R' (R i-Rt)

f(Rsi= n (5lb

fi (R )  VR,(Ri+R,) (outgoing waves) (5.11b)

By computing the inverse Fourier transform of Eq. (5.10), it can

be shown that pn(R',t) is the sum of an incoming and outgoing wave. Thetn
former corresponds to a convergent front, which travels from Ai to O and
f1

the latter corresponds to the divergent front that subsequently propagates

from 0 to A i+I  The factor j in the second term of Eq. (5.10) indicates

that the phase of the outgoing wave lags that of the incoming wave by 900.
i-i

The cumulative phase factor j exp(-jkRi ) keeps a running total of the

distance traveled by the wave and the number of times it has crossed the

axis.

The special case i=O corresponds to propagation along the first

segment of the ray path, which lies between the real source 0 and the first

reflection point A1 ; on this segment the wave front spreads spherically.

The segment length OAI is equal to R /2n. The input waveform for the

propagation algorithm is measured on the axis at a distance R /2n from the
n

source. This reference waveform is "launched" from the point A1 to propa-

gate as a convergent wave along AI0.

I..
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The waveform is computed at positions R' on the nth eigenray

according to the following two procedures. (1) For each R' absorption and

geometric spreading are computed in the frequency domain, and distortion

is computed in the time domain. The combination is referred to as a prop-

agation step. (2) Each time the wave crosses the axis, its phase is

shifted by 900. A flow chart for the procedure is presented in Fig. 5.3.

A more elaborate description of the algorithm is now presented.

The reader who is not interested in details may proceed to Se( Lon C with-

out loss of continuity. To begin, the waveform is specified on a sphere

of radius R . As we have already noted, it is convenient to specify the

initial waveform at the tube wall (point A1 ); then R =R /2n. In general{ on

the waveform at any reflection point A i is given by the end result from

propagation over the (i-l)th segment.

Consider then the general case in which a wave leaves A. on1

AiO i. The wave is propagated inward along the ray in small steps

AR=Ar sine . The position of the wave in relation to the ith focus isn

identified by the step index m, and the distance R'(m) from the ith focus

is given by

R'(m) R 0 - mAR (incoming waves) , (5.12a)
0I

R'(m) mAR (outgoing waves) , (5.12b)

rI

where m 1, 2, ..., M, and MAR=R /2n.
n

Incremental spreading, absorption, and distortion are computed at

each position R'(m). Linear spreading and absorption are computed in the

frequency domain from the formula

Ll Z.,
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f1[R'(m)]

P[R'(m),w] = P[R'(m-1),w] f R (5.13)
f [R'(m-1)]
n

where R'(O)=Ro . Function ABSORP is used to determine the absorption

coefficient a at each component frequency. Distortion is computed in the

time domain according to the equation

t'(m) = t'(m-l) - B p[R'(m-l),t'(m-l)]AR, (5.14)
3

0 0

where t'(O)=D.

The FFT routine used between the absorption and distortion steps

requires that the time waveform be specified in equal time increments.

However, the distorted waveform that results from the use of Eq. (5.14)

does not satisfy this requirement. Subroutine RESAMPLE provides an equal

* time increment sample of the distorted waveform. A listing of RESAMPLE is

given in Appendix B of the work by Anderson.
3 0

Propagation is halted at a point R close to the focus. A 900n

phase shift is then applied to P(Rnw). Propagation is resumed on the

other side of the focus at R=R +=R the new reference is P(R ,W). It is
n n n

assumed that the principal effect in going from R to R+ is the phase
nl n

shift due to focusing, i.e., nonlinear distortion is assumed small over

this small distance. For the divergent front, the spreading factor fi is
In

specified by Eq. (5.11b) and the retarded time by

t' = t - (Ri-Ro+Rm)/c

U Propagation is continued until the wave reaches the tube wall at point

Ai+ I . At this point the index i is increased by 1, the origin is moved

. . .. -, -1., , ..
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from 0 i to 
0i1+, and the propagation/phase shift/propagation sequence is

repeated. As the wave front progresses down the tube, i increases sequen-

tially from I to n. Propagation is complete when the signal arrives at the

nth focus. Because the receiver is located at the nth focus, only a 450

phase shift is applied there. Finally, the waveform is plotted as a func-

tion of the retarded time t'-t-(R n-R )/c.

The radius Rn at which the propagation sequence is temporarily

halted has not yet been determined. We suggest that it be optimized so as

to provide the best possible agreement between measured and computed

results. Since the linear solution [Eq. (5.10)] upon which this algorithm

is based is valid only for kR'>>l, it seems reasonable that, as a first

try, R be chosen as small as possible but still large enough to satisfyn

kR >>I.
n

C. Qualitative Results

The algorithm described above has not yet been implemented.

However, using our knowledge of the three basic processes at work--absorp-

tion and spreading, distortion, and phase shift--we can sketch qualitative

results. It is assumed that the phase shift happens very quickly; the

wave shape therefore changes radically over a very short distance.

Spreading-absorption and distortion, on the other hand, are cumulative

processes: their effects increase with travel distance. Distortion tends

to steepen the leading edges of positive pressure regions and the trailing

edges of negative pressure regions. Absorption tends to smooth rapid

changes in pressure and pressure gradient. Approximate waveforms sketched

according to these three basic processes indicate that the proposed
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algorithm may help to explain the extra phase shift noted for the

waveforms observed at high spark energies.

Waveforms are sketched in Fig. 5.4 for various positions on a

single eigenray. The points Ai correspond to points of reflection at the

tube wall, the points 0 to successive foci (see Fig. 5.2). It is assumed
i

in this example that n>3. The cumulative phase shift is noted directly to

the right of each waveform. The apparent phase shift, found by comparing

each of these waveforms with the results from linear theory (see Figs. 3.4,

3.5), is noted in parentheses. The sketches are quite rough, and the appar-

ent phase shifts were determined only by visual comparison with the small-

signal waveforms. Nevertheless, the results show that the time shift

induced by nonlinear distortion can be interpreted as a phase shift.

The difference between the linear theory phase shift and the

apparent phase shift increases as the wave propagates down the tube. Be-

cause the wave amplitude decreases with distance, finite amplitude effects

become less important at large distances from the source. In the limit

that the wave becomes a small-signal wave, the difference between the

actual and apparent phase shifts becomes constant, and any further conver-

gence or divergence is described by linear theory. The same type of

behavior was observed in the measured waveforms.

In summary, finite amplitude sound waves have been measured on

the axis of a cylindrical tube. The waveforms differ from small-signal

waveforms obtained under otherwise equal conditions. We have postulated

that nonlinear propagation distortion is responsible for the difference,

and have proposed a numerical model to test our hypothesis. Qualitative

results show that nonlinear propagation distortion alters the wave shape

IA
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in accord with experimental observations. Actual implementation of this

model will be necessary to more completely determine its validity.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

Experimental and theoretical means have been used to study the

propagation of a spherically diverging pressure pulse in a rigid cylin-

drical tube. Both source and receiver were located on the tube axis, and

the pulse was an N wave produced by an electric spark. Results have been

obtained for both small-signal and finite amplitude waves.

In the experiment, N waves are produced by means of an electric

spark, whose gap length was much shorter than the length of the N wave.

Small-signal waveforms were measured on axis with a baffled condenser

microphone and a digital oscilloscope. Measured waveforms indicate that

the pressure observed at the receiver is a combination of direct and

reflected waves. The shapes of the reflected waves vary periodically with

reflection number n; the period is four pulses. It is surmised that the

change in wave shape is caused by 90* phase shifts suffered as the waves

focus on the axis. The envelope of the pulse amplitudes increases and

then slowly decays. Most of the reflected waves are larger in amplitude

than the direct wave. Measurements were also made with the microphone

located off axis. The received signals were composed of pre- and post-

focus waves, whose amplitudes were much smaller than those of the on-axis

signals. Finally, the spark energy was increased, and finite amplitude

waves were measured on the tube axis. The shape of each high amplitude

pulse differed considerably from that of its corresponding low amplitude

pulse.

109
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Because of variation in spark amplitude and difficulty

encountered in aligning the apparatus, individual pulse amplitudes were

averaged over several spark discharges. An "average waveform", whose

amplitude was the same as the computed mean, was then captured and stored.

Use of this procedure permitted accurate measurement of each pulse in the

series.

We have presented a theoretical analysis in which we account

for thermoviscous and relaxation absorption and the finite size of the

microphone, but assume that the source is an ideal point source, the tube

wall is perfectly rigid, and boundary layer absorption is negligible.

The linear, inhomogeneous wave equation for propagation in a thermoviscous

medium has been solved by means of Fourier transforms. A general solution

has been given in the full transform domain (r,C,w). Approximate fre-

quency domain (r,x,w) solutions valid for "high frequency" (ka sinO >> 1)
n

have been derived from the general solution for on- and off-axis observa-

tion points. The frequency domain solution shows that the signal received

is the sum of direct and reflected waves, and that focusing, absorption,

and microphone directivity contribute to the observed changes in wave

shape and amplitude from one arrival to the next.

Time waveforms of the individual reflected pulses have been

found by computing the inverse Fourier transform of the frequency domain

solution. On- and off-axis waveforms have been calculated analytically

for a case in which the direct wave is an ideal N wave, the medium loss-

less, and the receiver an ideal point probe. Waveforms have also been

computed digitally for less restrictive conditions. The input waveform

for the computer program was determined from measurements. Mainstream

4f
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thermoviscous and relaxation absorption were included, and the microphone

was assumed to be a baffled piston of finite size. Computed and measured

waveforms are similar in shape, but they differ substantially in ampli-

tude. It has been postulated that the amplitude discrepancy is caused

by one or more of three possible factors: misalignment of the apparatus,

our neglect of boundary layer effects, or nonlinear propagation distor-

tion.

The effect of finite amplitude on the measured waveforms has

been investigated in some detail. Masured data suggested that the

accumulated phase shift of each pulse is reduced by nonlinear propagation

distortion. A numerical propagation algorithm, modeled after one develop-

ed by Anderson, has been devised to account for distortion, absorption,

and focusing of the guided wave fronts. The algorithm has not yet been

implemented. However, qualitative results sketched according to the basic

principles involved suggest that use of the algorithm should yield

improved theoretical predictions for finite amplitude waves. It is hoped

that the algorithm will be implemented in the near future.

It is concluded from the experimental and theoretical results

that when a point pressure source is placed on the axis of a cylindrical

Ntube, the pressure elsewhere on the axis is equal to the sum of a direct

wave, which propagates straight down the axis, and a series of reflected

waves, which alternately bounce off the tube wall and focus on the axis.

The time waveforms of the received signals are determined in large part

by (1) the time history of the wave emitted by the source, (2) a cumula-

tive phase shift, which is increased by 900 each time a wave front crosses

the axis, (3) atmospheric absorption, (4) microphone directivity, and

I "! : : " - , 'I ' -. .. . .. .- .. ', , "' ' ..



112

(5) for larger source levels, nonlinear propagation distortion. Off

axis the amplitudes of the received pulses are considerably reduced and

the phase factors are different from their on-axis values.

The experimental and analytical techniques described herein, in

addition to the results presented, may find application in problems

similar to this one. A few related problems were mentioned in Chapter I.

Further application of our results for the focusing of guided waves may be

fruitful in areas such as array development and ultrasonic imaging. The

digital implementation of atmospheric absorption may easily be adapted

for use in architectural and environmental acoustics problems. Finally,

this work should provide a foundation on which to begin study of the

nonlinear interaction of multiple sound waves in a tube.

4
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APPENDIX A

900 PHASE SHIFT OF A BROADBAND SIGNAL

The phase properties of a broadband signal are most easily

addressed in the frequency domain. It has been shown in a frequency

domain analysis that two-dimensional focusing results in a 900 phase

shift, or multiplication by J(= ZF). Let us assume that the pre-focus

wave is a real function of time. In this appendix it is shown that the

post-focus output is real if and only if the positive frequency components

are shifted +900 and the negative components -90, or vice versa.

First, let us establish some symmetry properties of Fourier

transforms. The Fourier transform of f(t) is defined by

f_:t
F(w) f(t) e dt

If f and t are real, the complex conjugate of the transform is

F*(w) = f(t) e j t dt = F(-w) (A.1)

Hence, if f(t) is real, F(w) is Hermitian and therefore satisfies the

following:

IF(-w)I = IF*(w)I

= IF(w)J

arg F(-w) = arg F*(w)

= -arg F(w)

114

4L'I



115

That is, the amplitude of the transform is even and the phase is odd. It

can be shown similarly that if f(t) is pure imaginary, then F(i) is skew

Hermitian, i.e., F(-w)=-F*(). Al1

* Now let us postulate that fl(t) is real and that the transfer

function of a "black box" which shifts all spectral components by 90 * is

jO(w), where G(w) is to be determined. If the transform of the input is

F 1I(w), the transform of the output is given by

F 2 () JF()G(w) (A.2)

In order for the output f2 (t) to be real, F2 (w) must have Hermitian

symmetry. Substituting Eq. (A.2) into Eq. (A.1), one obtains

F 1 (-w)G(-w) = - ()*w

Since f1 (t) is real, FI(w) is Hermitian, and we find that G satisfies the

relation

G(-w) =-G* (w)

In other words, G is skew Hermitian.

The function G must be real to maintain the 90* phase difference

between F and F It follows that G(-w)=-G(w). In addition, our "black

box" has no effect on the magnitude of F1 (i.e., IF21=IFII); so IGI=l.

It is concluded that

G(w) sgn(w) 0 
= 0

-i ~ , < 0

Thus, if a zroadband signal is to be shifted by 900, its

Fourier transform must be multiplied by j sgn(w).

Al
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APPENDIX B

ATMOSPHERIC ABSORPTION OF A SMALL-SIGNAL N WAVE

In this appendix analytical and digital methods are described

for calculating the shape of a small-signal N wave as it propagates

through homogeneous air. Results from the theoretical models are compared

with measured N waveforms. The digital techniques employed herein are

used in Chapter III to account for atmospheric absorption in the cylindri-

cal tube.

The coefficient a for calculation of the absorption of sound

in air has been standardized in American National Standards Institute

(ANSI) document S1.26-1978.B I The frequency dependence is given in

simplified form by

= aw2 + bw 0 /[l+( 0 W) 2 ]+ dwN/[I+(wN/W) 2 ] Np/m (B.1)

where w (=2rf) is the angular frequency, wO and wN are the angular

vibrational relaxation frequencies of oxygen and nitrogen, respectively,

and a, b, and d depend on the ambient temperature T and pressure p0 . The

values of w and wN depend on T, po. and the relative humidity RH.

Procedures for calculating w0O 9NI a, b, and d are given in the ANSI

standard. The absorption coefficient calculated by this method is

accurate to within 4I0%, subject to the following restrictions:

6
50 f/p - 1 0 6 Hz/atm , Po < 2 atm

0 <_ T <_ 40*C

J0
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An analytical solution is found for the propagation of an ideal

N wave through air. The solution is based on an expansion of a to first

2order in w ; the expansion is valid at frequencies such that w>w 0 * The

low frequency accuracy of the solution is improved by approximating

with a two-term polynomial fit; the coefficients are determined from a

quadratic fit of the ANSI absorption.

A computer model based on the ANSI absorption is developed

to calculate the effects of atmospheric absorption on arbitrary broadband

pressure signals.

Finally, the results of a free-medium propagation experiment

are presented. Measured waveforms are in favorable agreement with those

obtained from the analytical and digital models.

1. Quadratic Approximation for a

Each of the three terms in the expression for a represents the

*effect of a different absorption mechanism. The first term on the right-

hand side of Eq. (B.1) is equal to the sum of the so-called classical

thermoviscous absorption a 1c (which includes Stokes' assumption about the

ratio of the two viscosity coefficients) and the rotational relaxation

absorption a r. The classical absorption is defined byB.2

.4.
tin 2bopto [tro eprtr a enmaue yGenpn

B.4r
Bas ad Ketn gvea sipife result- Np/in<10Mz
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r  0.32 cl

The second and third terms in Eq. (B.1) owe their presence to

the vibrational relaxation of oxygen and nitrogen, respectively. When

T, pop and RH are within the limits set by the standard, w0 is between one

and two orders of magnitude greater than wN . If the frequency range of

interest is limited to w>>mwO the third term may be neglected, and the

second may be expanded in powers of (W /W)2 to yield

bw 0 [+( 0 /W)2 = bw0 1(wolw)+... + bw0

The total atmospheric absorption may therefore be approximated by the

quadratic

2

a= + bw0  (W>>wO )

The parameters a and b and the relaxation frequencies w0 and wN

have been computed for the actual atmospheric conditions according to

ANSI S1.26. Under typical laboratory conditions the oxygen relaxation

frequency fo=o0 /21T lies between 10 kHz and 75 kHz. More specifically,

when T=25*C, po = I atm, and RH=48%, we find that

fo = 54.3 kHz

a = 4.71 x 10-13 Np - sec2/m

bw0 = 3.64 x 10
-1 Np/m

The approximate absorption a and the ANSI absorption a are plotted in

Fig. B.I. The a curve is an unacceptably poor approximation at frequen-

cies below about 50 kHz: the error is 82% at 50 kHz and 2500% at 10 kHz.

Clearly, strict adherence to the condition w>>w0 is a severe restriction
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on the usefulness of the a curve. The frequency content of a small-

signal N wave is now examined to determine whether it conforms to this

restriction.

The Fourier spectrum (magnitude of the Fourier transform) of

an ideal N wave is obtained from Eq. (3.56),

ji [N(t)]l =(2/w)j (wT o) (units of time)

where jl(z) is the spherical Bessel function of the first kind of order I

and T is the N wave half-duration. The first (and largest) peak in the
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spectrum is located at the point w p=2f p=2.1/To . Although the spectrum

has nonzero amplitude down to zero frequency, a reasonable low end cutoff

may be imposed at a frequency where the spectrum level is 10 dB below the

peak level. In the case of an ideal N wave, the cutoff frequency f~ld

is approximately equal to f /7. Now the amplitude and duration of spark-

produced N waves cannot be varied independently.B .5 In order to qualify

as a "small signal" at typical short laboratory distances (peak pressure

level < 125 dB re 2 x 10- 5 N/m2), an N wave must have a half-duration less

than about 5 psec. Then, if T 0 5 psec, the low end cutoff fre-

quency f-l0dB is approximately equal to 10 kHz.

One may similarly show that the upper cutoff frequency f-10dB

of the envelope of an ideal N wave spectrum falls approximately at 7f .p

The high frequency range of the approximate absorption is limited by the

restriction of the ANSI absorption to frequencies less than 1 MHz.

Furthermore, the bandwidth of the experimental apparatus is I MHz. If

the N wave spectrum is limited to f < f-lOdB = I MHz, the ,sable

range of N wave duration is restricted to T 0 2.5 psec. To summarize,o

the infinite bandwidth of a low amplitude, ideal N wave may be reduced

to an important band of frequencies between 10 kHz and 1 MHz; yet the

approximate absorption is considerably in error at frequencies below

50 kHz.

In an effort to achieve better overall agreement between the

standard and approximate absorption curves, a linear, least squares

regression was performed on the ANSI absorption to determine a best-fit

2
approximation of the form a*=Aw +B. The regression was performed over

the interval 10 kHz to 1 MHz with a sampling density of 25 points per

-47
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decade. The following atmospheric conditions were specified: T=25*C,

Po = 1 atm, and RH=48%. For these conditions the "improved" coefficients

A and B were determined to be

-132
A = 4.79 x 10 Np - sec2/M

B = 1.94 x 10-1 Np/m .

The correlation coefficient is 0.9996. The quadratic fit is within +0.18,

-0.14 Np/m of the ANSI absorption at 48% relative humidity between 10 kHz

and 1.0 MHz. Relative error is usually considered a more valuable statis-

tic than absolute error. The relative error between a* and a is large at

low frequencies. Nevertheless, the attenuation is so small at low fre-

quencies that the effects of the error on the propagation of a small-signal

N wave over short distances are negligible.

The best-fit absorption a* is presented in Fig. B.A along with

the ANSI absorption a and the first approximation a. The quadratic fit

a* represents a significant improvement over the first approximation a,

especially with regard to N wave propagation. The error in a is large at

low frequencies (3.1 Np/m at 10 kHz) and vanishingly small at high fre-

quencies (6 x 10- 3 Np/m at 1 MHz), while the error in a* is balanced more

evenly throughout the frequency domain.

The fact that the ANSI and best-fit curves intersect is of

additional merit. The second approximation a* is more accurate than the

first approximation a in a band of frequencies centered at the inter-

section frequency, 58.4 kHz. For example, in the octave band centered at

58.4 kHz (41.3 - 82.5 kHz), the error in a* is within -0.057, +0.061 Np/m.

Now the maximum amplitude in the spectrum of an ideal N wave whose half-

cm -.- --- -- v. - -.
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duration is 5 Usec falls at 67 kHz. At this frequency the error in a* is

0.024 Np/m, and the error in is 0.14 Np/m. It is therefore expected

that the use of a* instead of a will yield more accurate results in the

analytical solution, which is derived in the next section.

2. Propagation of a Small-Signal N Wave; Approximate Absorption

The approximate absorption coefficient is now applied to a

diverging, spherical N wave. An integral solution is obtained which is

valid for a large class of signals f(t) whose Fourier spectra are con-

centrated in, but not necessarily confined to, the frequency band 10 kHz

to 1 MHz. The limits of integration are -w, w, It is assumed that the

spectral components of f below 10 kHz and above 1 MHz contribute little to

the shape of f(t); error in their attenuation will therefore make little

difference to the shape of the propagated waveform.

Consider an outgoing spherical wave f(t) whose Fourier transform

F(.) has the aforementioned characteristics. For propagation through air,

dispersion is negligible and the absorption may be approximated by a*.

The signal may be represented at position R by its Fourier transform

F(w,R-R) = CR/R) F(w,R ) e 
-j k (R- R0

0 0 0

where F(w,R ) is the Fourier transform of the signal at the source posi-

tion R and the propagation constant k is defined by

k = w/c°  ja*

Since

[[4?A(RR 0)l/ exp[B(R-R - /4A(R-R0 )J
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where t'=t-(R-R )/cot the time function f(t',R-R ) corresponding to

F(w,R-R ) is given by the following convolution integral:0

f(t',R-R) (R/R) [4rA(R-R)]
- / 2 e-B (R-0)

w -T 2/4A(R-Ro)
x J f(t'-T,Ro) e dt (B.2)

It is possible to evaluate this integral exactly for a variety of simple

functions f, including periodic functions, Gaussian functions, and a few

transients of finite duration. One such transient is the ideal N wave.

Consider the ideal N function, which, in terms of the

dimensionless retarded time c=t'/T , is given by [see Eq. (3.57)]

N( ) - rect[,/2] . (B.3)

When the source function f(4,Ro) is equal to N(4), the convolution

integral takes the form

R = [4ARR )]1- /2 -B(R-R0 ) T
T- f(p,R-Ro) = o(R eT

0

x w (T- ) rect[(4-T)/2] e di

2where n=4A(R-R )/T o . Changing the limits of integration in accordance

with the properties of the rect function, we may rewrite the above inte-

gral as the sum of two integrals,

R f(4,R-Ro) =[4A(R-Ro)] - /
2 e-B(R-R) T

× T e- 1  dT e-/r dr

o e

I-r O-1
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The result is

R_ f(4,R-R) 0e (()1/2 e( 2+1)/ sinh(2W/n)

0

- jerf[ (,+l) /,r~ - erf [ (0-1)//Irl) (B.4)

where erf[xl is the error integral, defined by

erf [xl -- 2_ et dt

Let us examine the behavior of the second term in Eq. (B.4).

When the effective absorption is very small, n approaches zero. This

limit is appropriate for large values of T and for short distances.
0

Since

1 x > 2

erf]

- , x < 2

the second term on the right-hand side of Eq. (B.4) is approximately

linear near the time origin. It has extrema at some values of Wj<1 and

drops to half the extremum amplitude when II = .

The behavior of the first term differs from that of the second

S. term in such a way as to diminish their sum. The extrema of the first

term are found at the points =_l:

R l'2-B (R-R o )
R f(±I,R-R) ±(n/4 ) 2 e 0 (l-e-4 /n)
R 0
0

The peak amplitude tends to zero when n is small and is approximately

equal to i/2V/ for n=l. When the effective absorption is large, n- and

both the first and second terms vanish.

A-
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The two contributing terms and their sum are shown for various

values of the parameter n in Fig. B.2. The factor exp[-B(R-R )] has been

suppressed because it is the same in all cases. The second term exhihffq

* the basic character of a decaying N wave: its amplitude decays with

increasing R. The extra attenuation represented by the first term is

appreciable only for moderately large values of n (10 -1<n<103).

A similar approximation of the atmospheric absorption curve has

B.6been used by Rogers and Gardner, who took advantage of the fact that
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the curve was a simple w2 dependence for frequencies far below the

nitrogen relaxation frequency.

3. Digital Implementation; ANSI Standard Absorption

Direct comparison of the analytical solution for an ideal N wave

with measured waveforms is not very revealing because the real wave does

not start out (at the reference distance R ) as an ideal N. This facto

motivated the development of a computer algorithm that is able to handle

both ideal and real waveforms. Use of the computer model made possible an

indirect comparison of the analytical solution and the measurements, and

afforded a useful check for both.

The computer model is summarized in Fig. B.3. First the fast

Fourier transform (FFT) is used to obtain a frequency domain

DIGITIZED SIGNAL

fit' ROi

F1'
Fif1. Rol
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representation of the (digitized) reference waveform. Next the ANSI

standard absorption is applied to each frequency component. Finally, the

inverse FFT is used to obtain the time waveform of the attenuated signal.

Two ways of providing the input f(t',R 0) were used: The ideal N wave was

digitized by a computer subroutine; real N waves were digitized by the

oscilloscope.

First we discuss the results for an ideal N wave input. Two

different sets of computations were made: (1) T 0fixed (5 psec) and

R-R 0varied so as to yield the values 0.001, 0.01, 0.1, 1 for n; (2) R-R0

fixed (1 m) and T varied to yield the same four values for n. The first
0

set corresponds to physical propagation through the atmosphere. The

second serves to establish a range of validity for the analytical solu-

tion. The results are presented in Fig. B.4, along with waveforms calcu-

lated using the analytical model under the same conditions.

Consider first the two columns, Fig. B.4(a) and (b). The

agreement for each value of nj can easily be justified: The spectrum of an

N wave whose half-period is 5 pisec is, for the most part, within the

designed frequency window 10 kHz - 1 MHz. For To = 5 pxsec the analytical

solution is accurate for the life of the signal, at least until the signal

has been attenuated by 40 dB.

The second set of computations leads to the waveforms shown in

columns (c) and Wd. Comparison of the two columns reveals that slight

discrepancies exist between the analytical and digital computations.

.J When T is much larger than 5 p~sec, significant low frequency energy
0

lies outside the design window. Since low frequency absorption in the

analytical model does not change with frequency, below 10 kHz the

va'
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approximate attenuation is far greater than the true attenuation. This

disparity is manifested as an amplitude discrepancy in the upper two pairs

of waveforms in Figs. B.4(c) and (d). The head and tail sections, where

the high frequency components are most visible, are quite similar in the

analytical and digital models. The slope of the linear portion, which

depends mainly on low frequency components, is slightly lower in the

analytical wodel.

Comparisons of column (a) with column (c) and (b) with (d)

reveal the extent to which the approximate and ANSI absorption coeffi-

cients deviate from strict dependence on the single nondimensional parame-

ter n. For example, if the constant factor exp[-B(R-R )] is suppressed,I 2
the analytical solution depends only on w and, hence, only on n, but the

range of validity is more strictly limited at the low end. If in the

digital model R is fixed and T is chosen to specify a certain value of n
0

(Fig. B.4(d)], the results differ from those obtained by fixing T and

choosing R [Fig. B.4(b)]. This is so because, for low frequency signals,2
the ANSI absorption is not simply dependent 

on w 2

In summary, the analytical/approximate and digital/ANSI models

give similar results for ideal N waves whose half-periods are less than

5 psec. The computer model is of course more accurate because it employs

a more precise description of the atmospheric absorption.

4. Experiment

Measurements of the free-field attenuation of small-signal

N waves in air were carried out using the spark source, microphone, and

electronic system discussed in Chapter II. A 0.16 J spark was chosen

because (1) the period of the radiated N wave was long enough
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(To- 5.0 u~sec) to ensure good measurement fidelity, and (2) the amplitude

was low enough to ensure that nonlinear distortion was insignificant c-.er

the distances of interest. Experiments with shorter N waves yielded

similar results, but accuracy wais limited by the 0.5 U~sec time resolution

of the oscilloscope.

Time waveforms were recorded at distances of 40, 60, 100, and

160 cm. Preliminary results lacked consistency because of the variation or

"Jitter" in the spark amplitude. The following procedure was devised to

statistically filter out the jitter. Only signals from sparks whose break-

down voltage was in a certain narrow range (2.0 ±0.2 kV, determined by the

accuracy of the monitoring voltmeter) were stored in the oscilloscope memory.

The peak amplitudes of. the stored pressure waveforms were averaged for twenty

such signals at each receiver location. Finally, the spark source was dis-

charged until a signal having a peak amplitude equal to the average peak

amplitude (+0.5%, -0.Ob%) was recorded. W~hen an "~average pressure trace"

was measured in this way for each microphone position, results exhibited

satisfactorily consistent trends. The standard deviation for each of the

20-term averages ranged from 2.6% to 3.7% of the average peak value. The

measured "average waveforms" are shown in Fig. B.5(a). The amplitudes

have been multiplied by R/R 0to suppress the effect of spherical spreading.

The reference waveform (measured aL R=R0) was used as an input

for the computer model, and propagated waveforms were computed over the

4 distances R-R . The computed waveforms are presented in Fig. B.5(b).
0

Agreement between the measured and computed waveforms is well within

experimental tolerance.

w -71
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5. Summary: Comparison of Analytical/Approximate Model with
Measurements

The work described in this appendix was motivated by a desire

* to analytically describe the amplitude and shape of a small-signal N wave

as it propagates through an homogeneous atmosphere. A closed-form

solution based on an approximate form of the absorption coefficient has

been derived for a signal that is initially an ideal N wave. The

analytical/approximate solution compares favorably with a computer solu-

tion based on the Amnerican National Standard absorption. When the N wave

half-period is less than or equal to 5 pisec, the results of the two

models are in good agreement for the life of the waveform.

A simple attenuation experiment was performed in the open air

to ascertain the effects of atmospheric absorption on a real- N wave.

Absorption effects were also computed using the ANSI absorption coefficient.

The results, though limited in scope, are in excellent agreement, and serve

to verify the absorption standard in its application to broadband signals.

To better compare the results of the analytical model with the

measured data, the analytical and digital methods were used to compute

* .. waveforms (ideal N wave input) for distances equal to those traversed in

the experiment. The initial value of T 0was found from measured data to be

5.0 p.sec, and n was calculated from T 0and R-R 0. The calculated waveforms

appear in Fig. B.6. If the digital model is viewed as an intermediary and

the differences between the initial ideal and real input waveforms are

* taken into account, a very creditable correspondence between the analytical

solution [Fig. B.6(b)] and measured data [Fig. B.5(a)] is apparent. The

measured and numerically computed waveforms exhibit an important effect

of relaxation: the midpoint of each head shock moves away from the point
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--5 Pisec as the range increases. This effect is not found in the

analytically calculated waveforms because the simple Aw +B dependence of

the analytical/approximate model gives rise to waveforms which are sym-

metric about T 0.However, for the ranges of R-R aand T 0 considered, dif-

ferences between the results obtained from the two theoretical models are

small. It is concluded that the analytical solution is an accurate model

for propagation of small-signal, short-duration N waves over the distances

encountered in the tube experiment.



APPENDIX C

PROGRAM LISTINGS

Listings for Program NTUBE, Subroutine PLTWAVE, and Function

ABSORP are presented in this appendix, Program NTUBE is used to compute

on-axis waveforms from a given direct waveform. Subroutine PLTWAVE is

designed to plot the computed waveforms in the desired format. Function

ABSORP is used to compute atmospheric absorption in accordance with ANSI

Standard S1.26-1978.
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